【題目】在矩形ABCD中,AB=aAD=b,點E為對角線AC上一點,連接DE,以DE為邊,作矩形DEFG,點F在邊BC上;

1)觀察猜想:如圖1,當(dāng)a=b時,=______,∠ACG=______

2)類比探究:如圖2,當(dāng)ab時,求的值(用含a、b的式子表示)及∠ACG的度數(shù);

3)拓展應(yīng)用:如圖3,當(dāng)a=6,b=8,且DFAC,垂足為H,求CG的長;

【答案】1190°;(2)∠ACG =90°,;(3CG=.

【解析】

1)利用SAS可證,由全等三角形的性質(zhì)知,所以,結(jié)合可得;

2)方法一:過點EEMBC,ENDC,垂足分別為MN,連接EG,FD交于點O,連接OC,利用矩形的性質(zhì)及三角形內(nèi)角和定理可得∠ACG =90°,可證DAE∽△DCG,由相似三角形的對應(yīng)線段成比例可得的值;方法二:結(jié)合垂直與矩形的性質(zhì)由兩組對應(yīng)角分別相等的兩個三角形相似可得△CEN∽△CAD,END∽EMF,由相似三角形的性質(zhì)可得,,由兩組對應(yīng)線段成比例及其夾角相等的兩個三角形相似可得△ADE∽△CDG,根據(jù)其性質(zhì)可得結(jié)論;

(3)由勾股定理得AC長,由相似三角形的判定可得△ CDH∽△CAD,△DEF∽△ADC,由相似三角形的性質(zhì)可得CH的長及∠EDH=CAD,利用AAS DHE≌△DHC根據(jù)全等的性質(zhì)可得EH的長,進一步可知AE長,結(jié)合即知CG的值.

解:(1根據(jù)題意,易知矩形ABCD與矩形DEFG為正方形

2)方法一:連接EG,FD交于點O,連接OC.

∵四邊形EDGFABCD是矩形

∴∠ADC=EDG=90°

即∠ADE+EDC=CDG+EDC

∴∠ADE =CDG

∵∠ BCD=90°OF=OD

OC=

在矩形DEFG中,EG=DF OC=

OE=OG OE=OC=OG

∴∠OEC=OCE OCF=OFC

又∵∠OEC+ECG+EGC=180°

2OCE+2OCG =180°

∴∠OCE+OCG =90°即∠ACG =90°

∴∠ECD+DCG =90°

RtADC中,∠ECD+DAC =90°∴∠DAE=DCG

DAE∽△DCG

方法二:過點EEMBC,ENDC,垂足分別為MN.

∠EMC=∠MCN=∠ENC=90°

∴四邊形EMCN是矩形

EM=NC,∠MEN=90°.

∠ ENC =∠ADC=90°∴EN∥AD

∴△CEN∽△CAD

MEN=90°∠FED=90°

∠MEF=∠NED

∠END =∠EMF =90°

∴△END∽EMF

又∵EF=DG

∵∠ADC=EDG=90°

∴△ADE∽△CDG

, DAE=DCG

∵在RtADC中∠DAC+ACD=90°

∴∠ACG=DCG+ACD=90°

(3) AD=8,DC=6 AC==10

DFAC,∠CDH +ACD=90°

∵∠DAC+ACD=90°

∴∠CDH=DAC

∴△ CDH∽△CAD

CD2=CH·CA ,CDH=CAD

CD=6,AC=10

CH=

由(2)知 DEF =ADC =90°

∴△DEF∽△ADC

∴∠EDH=CAD

∴∠CDH=EDH

∵∠DHE=DHC=90°DH=DH

∴△DHE≌△DHC

EH=CH=

AE=AC-EH-HC=

CG=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,為放置在水平桌面上的臺燈,底座的高.長度均為的連桿始終在同一水平面上.

1)旋轉(zhuǎn)連桿,,使成平角,,如圖2,求連桿端點離桌面的高度.

2)將(1)中的連桿繞點逆時針旋轉(zhuǎn),使,如圖3,問此時連桿端點離桌面的高度是增加了還是減少?增加或減少了多少?(精確到,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)接四邊形中,,,,則四邊形的面積為(

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4mDAB的中點,拋物線y=﹣x2+bx+c經(jīng)過點A、點D

1)當(dāng)m1時,求拋物線y=﹣x2+bx+c的函數(shù)關(guān)系式;

2)延長BC至點E,連接OE,若OD平分∠AOE,拋物線與線段CE相交,求拋物線的頂點P到達最高位置時的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),某數(shù)學(xué)活動小組經(jīng)探究發(fā)現(xiàn):在⊙O中,直徑AB與弦CD相交于點P,此時PA· PB=PC·PD

1)如圖(2),若ABCD相交于圓外一點P, 上面的結(jié)論是否成立?請說明理由.

2)如圖(3,PD繞點P逆時針旋轉(zhuǎn)至與⊙O相切于點C, 直接寫出PA、PBPC之間的數(shù)量關(guān)系.

3)如圖(3),直接利用(2)的結(jié)論,求當(dāng) PC= ,PA=1,陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

已知實數(shù)m,n滿足(2m2n21)(2m2n21)80,試求2m2n2的值.

解:設(shè)2m2n2t,則原方程變?yōu)?/span>(t1)(t1)80,整理得t2180,t281,

所以t=土9,因為2m2n20,所以2m2n29.

上面這種方法稱為換元法,把其中某些部分看成一個整休,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.

根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.

1)已知實數(shù)x、y,滿足(2x22y23)(2x22y23)27,求x2y2的值.

2)已知RtACB的三邊為ab、cc為斜邊),其中a、b滿足(a2b2)(a2b24)5,求RtACB外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的面積為20,頂點Ay軸上,頂點Cx軸上,頂點D在雙曲線的圖象上,邊CDy軸于點E,若,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+4k30,

1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?

2)當(dāng)RtABC的斜邊a,且兩條直角邊的長bc恰好是這個方程的兩個根時,求k的值.

查看答案和解析>>

同步練習(xí)冊答案