【題目】已知二次函數(shù)與一次函數(shù),令.

(1)若的函數(shù)圖象相交于軸上的同一點.

①求的值;

②當(dāng)為何值時,的值最小,試求出該最小值.

(2)當(dāng)時,的增大而減小,請寫出的大小關(guān)系并給予證明.

【答案】(1)(2)

【解析】分析:(1)①直接得出一次函數(shù)y2=x+1過(-1,0),進而代入二次函數(shù)解析式得出答案;

②直接利用m的值得出Mx的函數(shù)關(guān)系式,進而得出最值;

(2)①首先表示出二次函數(shù)的對稱軸,進而二次函數(shù)增減性得出m的取值范圍;

②首先得出當(dāng)x=-2時,M的值,進而得出M<M0≤0,即y1-y2<0,即可得出答案.

詳解:(1) 、的函數(shù)圖象交于x軸上的同一點,

一次函數(shù)過點

二次函數(shù)為常數(shù)且也過點

解得: ;

,

當(dāng)時,的值最小,最小值為

(2)

證明:

對稱軸為

的增大而減小,

當(dāng)時,

的增大而減小,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AC=2,斜邊AB=,延長AB到點D,使BD=AB,連接CD,則tanBCD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(1)班班主任對本班學(xué)生進行了我最喜歡的課外活動的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

1)七年級(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為_____度,請補全條形統(tǒng)計圖;

2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A4名學(xué)生中隨機抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個直角三角形的苗圃,由一個正方形花壇和兩塊直角三角形的草皮組成.如果兩個直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為( 。┢椒矫祝

A. 3 B. 9 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦AB、CD相交于點E,,點D上,連接CO,并延長CO交線段AB于點F,連接OAOB,且OA,tanOBA

1)求證:∠OBA=∠OCD;

2)當(dāng)AOF是直角三角形時,求EF的長;

3)是否存在點F,使得SCEF4SBOF,若存在,請求EF的長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△A'BC是兩個完全重合的直角三角板,∠B30°,斜邊長為10cm.三角板ABC繞直角頂點C順時針旋轉(zhuǎn),當(dāng)點A落在AB邊上時.(1)求CA旋轉(zhuǎn)到CA′所構(gòu)成的扇形的弧長.(2)判斷BCAB′的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對這些欄目的喜愛情況,某學(xué)校組織學(xué)生會成員隨機抽取了部分學(xué)生進行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息解答下列問題:

(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù);

(3)若選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機選出兩名學(xué)生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,在平行四邊形ABCD中,點A、BC的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y=k≠0,x0)過點D

1)求此雙曲線的解析式;

2)作直線ACy軸于點E,連結(jié)DE,求 CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線分別與x軸交于A,B兩點,與y軸交于C點,直線EF垂直平分線段BC,分別交BC于點E,y軸于點F,交x軸于D

判定的形狀;

在線段BC下方的拋物線上有一點P,當(dāng)面積最大時,求點P的坐標(biāo)及面積的最大值;

如圖,過點E軸于點H,將繞點E逆時針旋轉(zhuǎn)一個角度的兩邊分別交線段BO,CO于點T,點K,當(dāng)為等腰三角形時,求此時KT的值.

查看答案和解析>>

同步練習(xí)冊答案