【題目】一組數(shù)據(jù)3,5,5,4,5,6的眾數(shù)是

【答案】5
【解析】解:這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)為:5.
故眾數(shù)為5.
所以答案是:5.
【考點(diǎn)精析】通過靈活運(yùn)用中位數(shù)、眾數(shù),掌握中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個(gè),也可能多個(gè),它一定是這組數(shù)據(jù)中的數(shù)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中O是原點(diǎn),ABCD的頂點(diǎn)A,C的坐標(biāo)分別是(8,0),(3,4),點(diǎn)D,E把線段OB三等分,延長CD、CE分別交OA、AB于點(diǎn)F,G,連接FG.則下列結(jié)論:
①F是OA的中點(diǎn);②△OFD與△BEG相似;③四邊形DEGF的面積是 ;④OD=
其中正確的結(jié)論是(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,已知二次函數(shù)y=﹣x2+bx的圖象過點(diǎn)A(4,0),頂點(diǎn)為B,連接AB、BO.

(1)求二次函數(shù)的表達(dá)式;

(2)若C是BO的中點(diǎn),點(diǎn)Q在線段AB上,設(shè)點(diǎn)B關(guān)于直線CQ的對稱點(diǎn)為B',當(dāng)△OCB'為等邊三角形時(shí),求BQ的長度;

(3)若點(diǎn)D在線段BO上,OD=2DB,點(diǎn)E、F在△OAB的邊上,且滿足△DOF與△DEF全等,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AO是BC邊上的中線,AB與AC的“極化值”就等于AO2﹣BO2的值,可記為AB△AC=AO2﹣BO2
(1)在圖1中,若∠BAC=90°,AB=8,AC=6,AO是BC邊上的中線,則AB△AC= , OC△OA=;

(2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;

(3)如圖3,在△ABC中,AB=AC,AO是BC邊上的中線,點(diǎn)N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A與B互余,B與C互補(bǔ),A=50°C的度數(shù)是(

A40° B50° C130° D140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列長度的線段為邊,能構(gòu)成直角三角形的是(

A. 1,2,3 B. 3,4,5 C. 5,6,7 D. 7,8,9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對函數(shù)y=﹣2x+2的描述錯(cuò)誤是(  )

A. y隨x的增大而減小 B. 圖象與x軸的交點(diǎn)坐標(biāo)為(1,0)

C. 圖象經(jīng)過第一、三、四象限 D. 圖象經(jīng)過點(diǎn)(3,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(  )

A. c>﹣1 B. b>0 C. 2a+b≠0 D. 9a+c>3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:

(1)本次被調(diào)查的學(xué)生有   名;

(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

同步練習(xí)冊答案