【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:

(1)本次被調(diào)查的學(xué)生有   名;

(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

【答案】(1200;(2)統(tǒng)計(jì)圖見解析;90°;(3144

【解析】試題分析:(1)喜好核桃味牛奶的學(xué)生人數(shù)除以它所占的百分比即可得本次被調(diào)查的學(xué)生人數(shù);

2)用本次被調(diào)查的學(xué)生的總?cè)藬?shù)減去喜好原味、草莓味、菠蘿味、核桃味的人數(shù)得出喜好香橙味的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可,用喜好菠蘿味牛奶的學(xué)生人數(shù)除以總?cè)藬?shù)再乘以360°,即可得喜好菠蘿味牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖2中所占圓心角的度數(shù);

3)用喜好草莓味的人數(shù)占的百分比減去喜好原味的人數(shù)占的百分比,再乘以該校的總?cè)藬?shù)即可.

試題解析:(110÷5%=200(名)

2200-38-62-50-10=40(名),

條形統(tǒng)計(jì)圖如下:

×360°=90°,

故喜好菠蘿味牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖2中所占圓心角的度數(shù)為90°;

31200×=144(盒),

故草莓味要比原味多送144盒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2﹣2mx(m1)與x軸的另一個(gè)交點(diǎn)為A.過點(diǎn)P(﹣1,m)作直線PDx軸于點(diǎn)D,交拋物線于點(diǎn)B,BCx軸交拋物線于點(diǎn)C.

(1)當(dāng)m=2時(shí).

①求線段BC的長及直線AB所對應(yīng)的函數(shù)關(guān)系式;

②若動(dòng)點(diǎn)Q在直線AB上方的拋物線上運(yùn)動(dòng),求點(diǎn)Q在何處時(shí),QAB的面積最大?

③若點(diǎn)F在坐標(biāo)軸上,且PF=PC,請直接寫出符合條件的點(diǎn)F在坐標(biāo);

(2)當(dāng)m1時(shí),連接CA、CP,問m為何值時(shí),CACP?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分鐘)之間的部分關(guān)系如圖象所示.求從關(guān)閉進(jìn)水管起需要多少分鐘該容器內(nèi)的水恰好放完.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、F、B、C是半圓O上的四個(gè)點(diǎn),四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點(diǎn)E,過點(diǎn)C作CD∥OF交AB的延長線于點(diǎn)D,延長AF交直線CD于點(diǎn)H.

(1)求證:CD是半圓O的切線;

(2)若DH=,求EF的長和半徑OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b與雙曲線(x﹤0)相交于A(-4,a)、B(-1,4)兩點(diǎn).

(1)求直線和雙曲線的解析式;

(2)在y軸上存在一點(diǎn)P,使得PA+PB的值最小,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)如圖①,∠AOB=60°,OD平分∠BOC,OE平分∠AOC,則∠EOD=度;

(2)若∠AOB=90°,其它條件不變,則∠EOD=;
(3)若∠AOB=α,其它條件不變,則∠EOD=
(4)類比應(yīng)用:如圖②,已知線段AB,C是線段AB上任一點(diǎn),D、E分別是AC、CB的中點(diǎn),試猜想DE與AB的數(shù)量關(guān)系為 , 并寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形是軸對稱圖形,__________是它的對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麻城市思源實(shí)驗(yàn)學(xué)校自從開展“高效課堂”模式以來,在課堂上進(jìn)行當(dāng)堂檢測效果很好.每節(jié)課40分鐘教學(xué),假設(shè)老師用于精講的時(shí)間x(單位:分鐘)與學(xué)生學(xué)習(xí)收益量y的關(guān)系如圖1所示,學(xué)生用于當(dāng)堂檢測的時(shí)間x(單位:分鐘)與學(xué)生學(xué)習(xí)收益y的關(guān)系如圖2所示(其中OA是拋物線的一部分,A為拋物線的頂點(diǎn)),且用于當(dāng)堂檢測的時(shí)間不超過用于精講的時(shí)間.

(1)求老師精講時(shí)的學(xué)生學(xué)習(xí)收益量y與用于精講的時(shí)間x之間的函數(shù)關(guān)系式;

(2)求學(xué)生當(dāng)堂檢測的學(xué)習(xí)收益量y與用于當(dāng)堂檢測的時(shí)間x的函數(shù)關(guān)系式;

(3)問此“高效課堂”模式如何分配精講和當(dāng)堂檢測的時(shí)間,才能使學(xué)生在這40分鐘的學(xué)習(xí)收益總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,錯(cuò)誤的是( 。

A.菱形的對角線互相垂直平分

B.正方形的對角線互相垂直平分且相等

C.矩形的對角線相等且平分

D.平行四邊形的對角線相等且垂直

查看答案和解析>>

同步練習(xí)冊答案