【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點A,過點,且平行于x軸的直線與一次函數(shù)的圖象,反比例函數(shù)的圖象分別交于點C,D.
(1)求點D 的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)m = 1時,用等式表示線段BD與CD長度之間的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)BD≤CD時,直接寫出m的取值范圍.
【答案】(1);(2)BD=2CD,理由見解析;(3)或.
【解析】
(1)先求出點D的縱坐標(biāo),再將點D代入反比例函數(shù)的解析式可得其橫坐標(biāo),由此即可得出答案;
(2)先根據(jù)(1)得出點D的坐標(biāo),從而可得BD的長,再根據(jù)一次函數(shù)的解析式可得點C的坐標(biāo),從而可得CD的長,由此即可得出答案;
(3)先根據(jù)點B、C、D的坐標(biāo)得出,再分三種情況,然后分別根據(jù)建立不等式求解即可.
(1)∵過點且平行于x軸的直線與反比例函數(shù)的圖象交于點D
∴點D的縱坐標(biāo)為
由反比例函數(shù)的解析式得:點D的橫坐標(biāo)為
故點D的坐標(biāo)為;
(2),理由如下:
∵過點且平行于x軸的直線與一次函數(shù)的圖象交于點C
∴點C的縱坐標(biāo)為
由一次函數(shù)的解析式得:點C的橫坐標(biāo)為
當(dāng)時,
;
(3)由(1)、(2)可知,
則
由題意,分以下三種情況:
①當(dāng)時,
由得:
解得(符合題設(shè))
②當(dāng)時,
由得:
解得(不符題設(shè),舍去)
③當(dāng)時,
此時必成立
即時,
綜上,m的取值范圍為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生對“防溺水”安全知識的掌握情況,從全校1500名學(xué)生中隨機抽取部分學(xué)生進行測試,并將測試成績(百分制,得分均為整數(shù))進行統(tǒng)計分析,繪制了不完整的頻數(shù)表和頻數(shù)直方圖.
組別 | 成績x(分) | 頻數(shù)(人) | 頻率 |
A組 | 50≤x<60 | 6 | 0.12 |
B組 | 60≤x<70 | a | 0.28 |
C組 | 70≤x<80 | 16 | 0.32 |
D組 | 80≤x<90 | 10 | 0.20 |
E組 | 90≤x≤100 | 4 | 0.08 |
由圖表中給出的信息回答下列問題:
(1)表中的a= ;抽取部分學(xué)生的成績的中位數(shù)在 組;
(2)把如圖的頻數(shù)直方圖補充完整;
(3)如果成績達到80分以上(包括80分)為優(yōu)秀,請估計該校1500名學(xué)生中成績優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與軸交于,兩點,與軸交于點,它的對稱軸是直線.
(1)求拋物線的表達式;
(2)連接,求線段的長;
(3)若點在軸上,且為等腰三角形,請求出符合條件的所有點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是線段AB上的一點,AB=6cm,O是AB外一定點.連接OP,將OP繞點O順時針旋轉(zhuǎn)120°得OQ,連接PQ,AQ.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,PQ,AQ的長度之間的關(guān)系進行了探究.
下面是小明的探究過程,請補充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段AP,PQ,AQ的長度(單位:cm)的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PQ | 4.00 | 2.31 | 0.84 | 1.43 | 3.07 | 4.77 | 6.49 |
AQ | 4.00 | 3.08 | 2.23 | 1.57 | 1.40 | 1.85 | 2.63 |
在AP,PQ,AQ的長度這三個量中,確定 的長度是自變量, 的長度和 的長度都是這個自變量的函數(shù);/span>
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)AQ=PQ時,線段AP的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE∥AB,EB∥CD,連接DE交BC于點O.
(1)求證:DE=BC;
(2)如果AC=5,,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為做好疫情宣傳巡查工作,各地積極借助科技手段加大防控力度.如圖,亮亮在外出期間被無人機隔空喊話“戴上口罩,趕緊回家”.據(jù)測量,無人機與亮亮的水平距離是15米,當(dāng)他抬頭仰視無人機時,仰角恰好為,若亮亮身高1.70米,則無人機距離地面的高度約為________米.(結(jié)果精確到0.1米,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)拋物線的對稱軸為_______;
(2)若當(dāng)時,的最小值是,求當(dāng)時,的最大值;
(3)已知直線與拋物線存在兩個交點,設(shè)左側(cè)的交點為點,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班甲、乙、丙三名同學(xué)20天的體溫數(shù)據(jù)記錄如下表:
甲的體溫 | 乙的體溫 | 丙的體溫 | ||||||||||||
溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 |
頻數(shù) | 5 | 5 | 5 | 5 | 頻數(shù) | 6 | 4 | 4 | 6 | 頻數(shù) | 4 | 6 | 6 | 4 |
則在這20天中,甲、乙、丙三名同學(xué)的體溫情況最穩(wěn)定的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM∥BC,且AC平分∠BAM.
(1)用尺規(guī)作∠ABC的平分線BD交AM于點D,連接CD.(只保留作圖痕跡,不寫作法)
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com