【題目】如圖,與都是等邊三角形,,下列結(jié)論中,正確的個數(shù)是( )①;②;③;④若,且,則.
A.1B.2C.3D.4
【答案】C
【解析】
利用全等三角形的判定和性質(zhì)一一判斷即可.
解:∵與都是等邊三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB
∴
∴,①正確;
∵
∴∠ADO=∠ABO
∴∠BOD=∠DAB=60°,②正確
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB
∴∠BDA-∠ADC≠∠CEA-∠AEB
∴,③錯誤
∵
∴∠DAC+∠BCA=180°
∵∠DAB=60°,
∴∠BCA=180°-∠DAB-∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴④正確
故由①②④三個正確,
故選:C
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個單位,所得新拋物線與x軸正半軸交于點B,與y軸交于點C,頂點為D.求:(1)點B、C、D坐標(biāo);(2)△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,將△ABC沿CB向右平移得到△DEF.若四邊形ABED的面積等于12,則平移距離等于( 。
A.2 B.3 C.4 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人兩次同時在一家糧店購買大米,兩次大米的價格分別為每千克a元和b元(a≠b).甲每次買100千克大米,乙每次買100元大米.
(1)用含a、b的代數(shù)式表示:甲兩次購買大米共需付款 元,乙兩次共購買 千克大米.若甲兩次購買大米的平均單價為每千克Q1元,乙兩次購買大米的平均單價為每千克Q2元.則:Q1= ;Q2= .
(2)若規(guī)定誰兩次購糧的平均價格低,誰購糧的方式就更合理,請你判斷比較甲、乙兩人的購糧方式,哪一個更合理,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位向一所希望小學(xué)贈送1080件文具,現(xiàn)用A、B兩種不同的包裝箱進行包裝,已知每個B型包裝箱能裝的文具是A型包裝箱1.5倍,單獨使用B型包裝箱比單獨使用A型包裝箱可少用12個。那么A、B型包裝箱每個分別可以裝多少件文具?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)和的圖象如圖所示,且,.
(1)由圖可知,不等式的解集是______;
(2)若不等式的解集是.
①點的坐標(biāo)為______.
②的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是函數(shù)上兩點,為一動點,作軸,軸,下列說法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.求證:AM=AD+MC.
(探究展示)
(2)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,試判斷AM=AD+MC是否成立?若成立,請給出證明,若不成立,請說明理由;
(拓展延伸)
(3)若(2)中矩形ABCD兩邊AB=6,BC=9,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,點C的坐標(biāo)為(4,-1).
(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點O為對稱中心,再畫出與△ABC關(guān)于原點O對稱的△A2B2C2,并寫出點的坐標(biāo)________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com