【題目】在△ABC中,∠ABC=90°
(1)如圖1,分別過A、C兩點作經(jīng)過點B的直線的垂線,垂足分別為點M,N,求證:△ABM∽△BCN;
(2)如圖2,P是BC邊上一點,∠BAP=∠C,tan∠PAC=,BP=2cm,求CP的長.
【答案】(1)詳見解析;(2)8.
【解析】
(1)利用相似三角形的判定易證△ABM∽△BCN;
(2)過P作PM⊥AP,交AC于M,過M作MN⊥PC于N,先證△PMN∽△ABP,求出PN與AB的比,設PN=2t,則AB=t,推出CN=PN=2t,再證△ABP∽△CBA,利用相似三角形對應邊的比相等即可求出t的值,進一步求出CP的值.
(1)證明:∵AM⊥MN,CN⊥MN,
∴∠M=∠N=90°
∴∠MAB+∠ABM=90°,
∵∠ABC=90°,
∴∠ABM+∠CBN=90°,
∴∠MAB=∠CBN,
∴△ABM∽△BCN;
(2)解:如圖2,過P作PM⊥AP,交AC于M,過M作MN⊥PC于N,
則∠APB+∠MPN=90°,∠APB+∠BAP=90°,
∴∠MPN=∠BAP,
又∵∠B=∠N=90°,
∴△PMN∽△ABP,
∴,
設PN=2t,則AB=t,
∵∠BAP=∠MPN,∠BAP=∠C,
∴∠MPC=∠C,
∴CN=PN=2t,
∵∠B=∠B=90°,∠BAP=∠C,
∴△ABP∽△CBA,
∴,
∴(t)2=2×(2+4t),
解得,x1=2,x2=(舍去),
∴PC=CN+PN=4t=4×2=8.
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,橫坐標為2的點A在反比例函數(shù)y(k>0)的圖象上,過點A作AB⊥x軸于點B,.
(1)求k的值;
(2)在x軸的負半軸上找點P,將點A繞點P順時針旋轉(zhuǎn)90°,其對應點A落在此反比例函數(shù)第三象限的圖象上,求點P的坐標;
(3)直線yx+n(n<0)與AB的延長線交于點C,與反比例函數(shù)圖象交于點E,若點E到直線AB的距離等于AC,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點E在AB上,AC與DE交于點H,連接BH、CE,且∠BCE=15°,下列結論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④;正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高速鐵路位于某省南部,是國家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟寧、菏澤,與鄭徐客運專線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個高鐵維護站,如圖①,現(xiàn)在想過B處在河上修一座橋,需要知道河寬,一測量員在河對岸的A處測得B在它的東北方向,測量員從A點開始沿岸邊向正東方向前進300米到達點C處,測得B在C的北偏西30度方向上.
(1)求所測之處河的寬度;(結果保留的十分位)
(2)除(1)的測量方案外,請你再設計一種測量河寬的方案,并在圖②中畫出圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點,C是OB的中點,D是AB上一點,四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC的斜邊AB在平面直角坐標系的x軸上,點C(1,3)在反比例函數(shù)y=的圖象上,且sin∠BAC=,則點B的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則線段CG、PM、PN三者之間的數(shù)量關系是 ;
(2)如圖②,若點P在BC的延長線上,則線段CG、PM、PN三者是否還有上述關系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關系,并證明你的猜想;
(3)如圖③,點E在正方形ABCD的對角線AC上,且AE=AD,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,若正方形ABCD的面積是12,請直接寫出PM+PN的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過點B,且頂點在直線x=上.
(1)求拋物線對應的函數(shù)關系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應點分別是D、C、E,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標;
(4)在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作∥BD交x軸于點N,連接PM、PN,設OM的長為t,△PMN的面積為S,求S和t的函數(shù)關系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com