【題目】如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路lABAl的小路.現(xiàn)新修一條路AC到公路l.小明測(cè)量出∠ACD31°,∠ABD45°,BC50m.請(qǐng)你幫小明計(jì)算他家到公路l的距離AD的長(zhǎng)度?(精確到0.1m;參考數(shù)據(jù) tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).

【答案】75.0m

【解析】

設(shè)BD=AD=xm,利用x表示出CD的長(zhǎng),然后在直角△ACD中,利用三角函數(shù)即可得到ADCD的比值,即可列方程求得x的值.

∵∠ADB=90°,∠ABD45°

DAB=45°,
∴∠ABD=∠DAB,

BD=AD
設(shè)BD=AD=xm
BC=50m
CD=x+50,
RtACD
tanC=,


答:AD的長(zhǎng)度75.0m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB6cmBC8cm,如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為每秒2cm1cm,FQBC,分別交AC、BC于點(diǎn)PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t4).

1)連接EF,若運(yùn)動(dòng)時(shí)間t秒時(shí),求證:△EQF是等腰直角三角形;

2)連接EP,當(dāng)△EPC的面積為3cm2時(shí),求t的值;

3)在運(yùn)動(dòng)過程中,當(dāng)t取何值時(shí),△EPQ與△ADC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,⊙OAC的中點(diǎn)D,DE切⊙O于點(diǎn)D,交BCE

1)求證DEBC;

2)若⊙O的半徑為5,BE2,求DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD中,BE=EF=FCCG=2GD,BG分別交AEAFM,N,下列結(jié)論:①AFBG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號(hào)是( 。

A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EBC上的一點(diǎn),連接AE,過B點(diǎn)作BHAE,垂足為點(diǎn)H,延長(zhǎng)BHCD于點(diǎn)F,連接AF

1)求證:AE=BF;

2)若正方形邊長(zhǎng)為5BE=2,求sinDAF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交A(﹣1,0),B兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)E.

(1)求拋物線的解析式;

(2)經(jīng)過B,C兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)E時(shí),求△PCD的面積;

(3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)Mx軸上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB經(jīng)過旋轉(zhuǎn)變換得到線段A1B1,A的對(duì)應(yīng)點(diǎn)為A1,B的對(duì)應(yīng)點(diǎn)為B1

(1)在圖中畫出旋轉(zhuǎn)中心O;

(2)設(shè)線段AB和線段A1B1交于點(diǎn)P,線段AB逆時(shí)針旋轉(zhuǎn)的最小旋轉(zhuǎn)角為,若∠APB1 ,請(qǐng)直接寫出,滿足的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,是邊上一點(diǎn),將沿直線對(duì)折,得到

1)當(dāng)平分時(shí),求的長(zhǎng);

2)連接,當(dāng),求的面積;

3)當(dāng)射線于點(diǎn)時(shí),求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為,且過點(diǎn)

1)求拋物線的解析式;

2)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案