如圖,點(diǎn)B、C、D在一條直線上,AB⊥BC,ED⊥CD,∠1+∠2=90°.
求證:△ABC∽△CDE.

證明:∵AB⊥BC,ED⊥CD,
∴∠B=∠D=90°.
∴∠A+∠1=90°.
又∵∠1+∠2=90°,
∴∠A=∠2,
∴△ABC∽△CDE.
分析:根據(jù)垂直的性質(zhì)和給出的條件證明有兩對(duì)角相等的兩個(gè)三角形相似即可.
點(diǎn)評(píng):本題考查了相似三角形的判定,常見的判定方法有
(1)平行線法:平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;
這是判定三角形相似的一種基本方法.相似的基本圖形可分別記為“A”型和“X”型,如圖所示在應(yīng)用時(shí)要善于從復(fù)雜的圖形中抽象出這些基本圖形.
(2)三邊法:三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似;
(3)兩邊及其夾角法:兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似;
(4)兩角法:有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,O,B在同一直線上,射線OD平分∠AOC,射線OE平分∠BOC.
(1)若∠COE=60°,求∠COD及∠BOD的度數(shù);
(2)你能發(fā)現(xiàn)射線OD,OE有什么位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B、C在⊙O上,AO∥BC,∠OBC=40°,則∠ACB的度數(shù)是
20°
20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京)已知:如圖,點(diǎn)E,A,C在同一直線上,AB∥CD,AB=CE,AC=CD.
求證:BC=ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,點(diǎn)G、E、F分別在平行四邊形ABCD的邊AD、DC和BC上,DG=DC,CE=CF,點(diǎn)P是射線GC上一點(diǎn),連接FP,EP.
求證:FP=EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通二模)如圖,點(diǎn)A是雙曲線y=
4
x
在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為
y=-
4
x
y=-
4
x

查看答案和解析>>

同步練習(xí)冊(cè)答案