已知1-
1
2
=
1
2
,
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
,
1
4
-
1
5
=
1
20
…根據(jù)這些等式的特點,求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
的值.
分析:根據(jù)所給的數(shù)據(jù),找出規(guī)律,把要求的式子進行變形,得出第二個數(shù)與第三個數(shù)互相抵消,第四個數(shù)與第五個數(shù)互相抵消,依此類推,到最后正好剩下第一個數(shù)和最后一個數(shù),從而得出答案.
解答:解:∵1-
1
2
=
1
2
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
,
1
4
-
1
5
=
1
20
…,
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
2009
-
1
2010
+
1
2010
-
1
2011

=1-
1
2011

=
2010
2011
點評:此題考查了數(shù)字的變化類,解題的關(guān)鍵是根據(jù)所給的數(shù)據(jù),找出其中的規(guī)律,再利用規(guī)律進行解答,對所求的等式進行變形時要注意符號的變化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知1-
1
2
=
1
2
,
1
2
-
1
3
=
1
6
1
3
-
1
4
=
1
12
,
1
4
-
1
5
=
1
20
…根據(jù)這些等式求值,
(1)計算
1
1×2
+
1
2×3
+
1
3×4
…+
1
49×50
的值;
(2)根據(jù)計算(1)發(fā)現(xiàn)的規(guī)律,試猜想
1
1×2
+
1
2×3
+
1
3×4
…+
1
49×50
…+
1
2008×2009
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知1-
1
2
=
1
2
,
1
2
-
1
3
=
1
6
1
3
-
1
4
=
1
12
,
1
4
-
1
5
=
1
20
…根據(jù)這些等式求值
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知1-
1
2
=
1
2
,
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
,…根據(jù)這些等式解答下列各題:
(1)求值:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
;
(2)化簡
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
;
(3)用類似方法計算
1
1×3
+
1
3×5
+
1
7×9
+…+
1
2007×2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃石)如圖所示,已知A(
1
2
,y1),B(2,y2)為反比例函數(shù)y=
1
x
圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是( 。

查看答案和解析>>

同步練習(xí)冊答案