已知1-
1
2
=
1
2
1
2
-
1
3
=
1
6
1
3
-
1
4
=
1
12
,
1
4
-
1
5
=
1
20
…根據(jù)這些等式求值
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
分析:先利用已知的等式對所求的等式進行變形,從而不難得到答案.
解答:解:∵1-
1
2
=
1
2
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
1
4
-
1
5
=
1
20

1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
…+
1
2007
-
1
2008
+
1
2008
-
1
2009
=1-
1
2009
=
2008
2009
點評:此題主要考查學(xué)生對規(guī)律型題的掌握情況,此題的關(guān)鍵是對所求的等式進行變形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知1-
1
2
=
1
2
,
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
,
1
4
-
1
5
=
1
20
…根據(jù)這些等式求值,
(1)計算
1
1×2
+
1
2×3
+
1
3×4
…+
1
49×50
的值;
(2)根據(jù)計算(1)發(fā)現(xiàn)的規(guī)律,試猜想
1
1×2
+
1
2×3
+
1
3×4
…+
1
49×50
…+
1
2008×2009
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知1-
1
2
=
1
2
,
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
,…根據(jù)這些等式解答下列各題:
(1)求值:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
;
(2)化簡
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
;
(3)用類似方法計算
1
1×3
+
1
3×5
+
1
7×9
+…+
1
2007×2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃石)如圖所示,已知A(
1
2
,y1),B(2,y2)為反比例函數(shù)y=
1
x
圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當(dāng)線段AP與線段BP之差達到最大時,點P的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知1-
1
2
=
1
2
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
,
1
4
-
1
5
=
1
20
…根據(jù)這些等式的特點,求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
的值.

查看答案和解析>>

同步練習(xí)冊答案