【題目】在利用圖象法求方程x2x+3的解x1,x2時,下面是四位同學(xué)的解法:

甲:函數(shù)yx2x3的圖象與x軸交點的橫坐標(biāo)是x1,x2

乙:函數(shù)yx2yx+3的圖象交點的橫坐標(biāo)是x1x2

丙:函數(shù)yx23yx的圖象交點的橫坐標(biāo)是x1,x2

。汉瘮(shù)yx2+1yx+4的圖象交點的橫坐標(biāo)是x1x2

你認(rèn)為解法正確的同學(xué)有_____

【答案】甲乙丙丁

【解析】

根據(jù)方程=x+3的解為、,即方程x3=0的兩個根為,即可求解.

方程=+3的解為、,即方程3=0的兩個根為、

甲:函數(shù)y=3的圖象與x軸交點的橫坐標(biāo)、,即方程3=0的兩個根為、,故甲正確;

乙:函數(shù)y=y= +3的圖象交點的橫坐標(biāo)、,即方程3=0的兩個根為、,故乙正確;

丙:函數(shù)y=3y=的圖象交點的橫坐標(biāo),即方程3=0的兩個根為、,故丙正確;

丁:函數(shù)y=+1y= +4的圖象交點的橫坐標(biāo)、,即方程3=0的兩個根為,故丁正確;

故答案為:甲乙丙丁.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線。

(1)求頂點坐標(biāo),對稱軸;

(2)取何值時, 的增大而減小?

(3)取何值時, =0; 取何值時, >0; 取何值時, <0 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:對于任意正實數(shù)a、b,∵≥0, ∴≥0,

,只有當(dāng)ab時,等號成立.

結(jié)論:在a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)ab時,a+b有最小值

根據(jù)上述內(nèi)容,回答下列問題:

m0,只有當(dāng)m 時,有最小值

思考驗證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(與點A、B不重合),過點CCDAB,垂足為D,ADaDBb

試根據(jù)圖形驗證,并指出等號成立時的條件.

探索應(yīng)用:如圖2,已知A(3,0),B(0,-4),P為雙曲線x0)上的任意一點,過點PPCx軸于點C,PDy軸于點D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)學(xué)生的環(huán)保意識,某校組織了一次全校2000名學(xué)生都參加的環(huán)保知識考試,考題共10題.考試結(jié)束后,學(xué)校團(tuán)委隨機(jī)抽查部分考生的考卷,對考生答題情況進(jìn)行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:

(1)本次抽查的樣本容量是   ;在扇形統(tǒng)計圖中,m=   ,n=   ,“答對8所對應(yīng)扇形的圓心角為   度;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,點的中點,連接并延長,交的延長線于點.

1)求證:.

2)連接,當(dāng)______時,四邊形是正方形.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y12x2+的頂點為M,直線y2x,點Pn0)為x軸上的一個動點,過點Px軸的垂線分別交拋物線y12x2+和直線y2x于點A、點B

1)直接寫出A、B兩點的坐標(biāo)(用含n的代數(shù)式表示)

2)設(shè)線段AB的長為d,求d關(guān)于n的函數(shù)關(guān)系式及d的最小值,并直接寫出此時線段OB與線段PM的位置關(guān)系和數(shù)量關(guān)系;

3)已知二次函數(shù)yax2+bx+cab,c為整數(shù)且a0),對一切實數(shù)x恒有xy2x2+,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象的頂點在的圖象上,則稱的伴隨函數(shù),如的伴隨函數(shù).

1)若函數(shù)的伴隨函數(shù),求的值;

2)已知函數(shù)的伴隨函數(shù).

①當(dāng)點(2,-2)在二次函數(shù)的圖象上時,求二次函數(shù)的解析式;

②已知矩形,為原點,點軸正半軸上,點軸正半軸上,點62),當(dāng)二次函數(shù)的圖象與矩形有三個交點時,求此二次函數(shù)的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( 。

A. 2cm B. 2.5cm C. 3cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點,動點P(x,0)x正半軸上運動,當(dāng)線段AP與線段BP之差達(dá)到最大時,點P的坐標(biāo)是(

A. (,0) B. (1,0) C. (,0) D. (,0)

查看答案和解析>>

同步練習(xí)冊答案