【題目】下列命題中:①等腰三角形底邊的中點到兩腰的距離相等;②等腰三角形的高、中線、角平分線互相重合;③若成軸對稱,則一定與全等;④有一個角是60度的三角形是等邊三角形;⑤等腰三角形的對稱軸是頂角的平分線.正確命題的個數(shù)是( )

A.1B.2C.3D.4

【答案】B

【解析】

利用軸對稱的性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定等知識分別判斷后即可確定正確的選項.

①等腰三角形底邊的中點到兩腰的距離相等;正確;

②等腰三角形的底邊上的高、底邊上的中線、頂角的平分線互相重合;不正確;

③若ABCA'B'C'成軸對稱,則ABC一定與A'B'C'全等;正確;

④有一個角是60度的等腰三角形是等邊三角形;不正確;

⑤等腰三角形的對稱軸是頂角的平分線所在的直線,不正確.

正確命題為:①③,2個;

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題引領(lǐng))

問題1:如圖1,在四邊形ABCD中,CB=CD,∠B=ADC=90°,∠BCD=120°.EF分別是AB,AD上的點.且∠ECF=60°.探究圖中線段BEEF,FD之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)CG,先證明△CBE≌△CDG,再證明△CEF≌△CGF.他得出的正確結(jié)論是

(探究思考)

問題2:如圖2,若將問題1的條件改為:四邊形ABCD中,CB=CD,∠ABC+ADC=180°,∠ECF=BCD,問題1的結(jié)論是否仍然成立?請說明理由.

(拓展延伸)

問題3:如圖3,在問題2的條件下,若點EAB的延長線上,點FDA的延長線上,若BE=2,DF=8,求EF的長(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點,AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BC△ABD的角平分線,BC=DC,∠A=∠E=30°,∠D=50°.

(1)寫出AB=DE的理由;

(2)∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】M為雙曲線y=上的一點,過點Mx軸、y軸的垂線,分別交直線y=﹣x+m于點D,C兩點,若直線y=﹣x+my軸交于點A,與x軸相交于點B.

(1)求ADBC的值.

(2)若直線y=﹣x+m平移后與雙曲線y=交于P、Q兩點,且PQ=3,求平移后m的值.

(3)若點M在第一象限的雙曲線上運(yùn)動,試說明△MPQ的面積是否存在最大值?如果存在,求出最大面積和M的坐標(biāo);如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,動點E以每秒1個單位長度的速度從點A出發(fā)沿AC方向運(yùn)動,點F同時以每秒1個單位長度的速度從點C出發(fā)沿CA方向運(yùn)動,若AC=12,BD=8,則經(jīng)過________秒后,四邊形BEDF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算.(能用公式計算的請用公式計算)

1(2)2(2018π)0

2(2a2)36a2a4;

3

4(2a+b5) (2ab5)

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形OABC的邊OA在x軸上,點B的坐標(biāo)為(8,4),P是對角線OB上的一個動點,點D(0,1)在y軸上,當(dāng)PC+PD最短時,點P的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:三角形ABC,A=90,AB=ACDBC的中點,如圖,EF分別是AB,AC上的點,且BE=AF,求證:DEF為等腰直角三角形.

查看答案和解析>>

同步練習(xí)冊答案