【題目】已知拋物線經(jīng)過點,點,直線,直線,直線經(jīng)過拋物線的頂點,且與相交于點,直線與軸、軸分別交于點、,若把拋物線上下平移,使拋物線的頂點在直線上(此時拋物線的頂點記為),再把拋物線左右平移,使拋物線的頂點在直線上(此時拋物線的頂點記為).
(1)求拋物線的解析式.
(2)判斷以點為圓心,半徑長為4的圓與直線的位置關(guān)系,并說明理由.
(3)設(shè)點、在直線上(點在點的下方),當(dāng)與相似時,求、的坐標(直接寫出結(jié)果).
【答案】(1) ;(2)相離,理由詳見解析;(3)、或、或、
【解析】
(1)將點A、B的坐標代入即可求出解析式;
(2)求出點N、C的坐標,計算NC的長度即可求解;
(3)分點F在直線下方,上方兩種情況求解.
(1)將點A、B的坐標代入,得,
解得: ,
∴拋物線的解析式為;
(2)∵,
∴頂點坐標是(2,2),
將點P的坐標代入直線中,得2k=2,即k=1,
∴直線的解析式是y=x,
設(shè)點M(2,m),代入直線的解析式中,得m=-4,
∴點M的坐標是(2,-4),
設(shè)點N的坐標是(n,-4),代入的解析式中,得n=-4,
∴點N的坐標是(-4,-4),
同理:D(-2,0),E(0,-2),
聯(lián)立、得,得,
∴C(-1,-1),
∴OC=,
∴,
∵點C在直線y=x上,
∴∠COE=∠OEC=45°,
∴∠OCE=90°,即NC⊥,
∵NC=
∴以點為圓心,半徑長為4的圓與直線相離;
(3)①當(dāng)點F在直線下方時,
設(shè),
∵點A、B的坐標分別為(0,6),(1,3),
∴AO=6,AB=BO=,
過點B作BL⊥y軸于L,則,,
∴OK=,
∴,
∵等腰△MHF和等腰△OAB相似,
∴∠HFM=∠ABO,則∠KBO=∠OFM=,
∵C(-1,-1),M(2,-4),
∴,, ,
∴,
∴F(-5,-5),
∵FH=FM=,OH=OF+FH=,
∴H(-10,-10);
②當(dāng)點F在直線上方時,
同理可得點F的坐標為(8,8),點H的坐標為(3,3)或(-10,-10);
綜上,、或、或、
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點C,連接 AC、OD交于點E.
(1)若tan∠ABC=2,證明:DA與⊙O相切:
(2)在(1)條件下,連接BD交⊙O于點F,連接EF,若BC=1,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)組織“獻愛心”捐款活動,并對部分捐款戶數(shù)進行調(diào)查和分組統(tǒng)計,數(shù)據(jù)整理成如下統(tǒng)計圖表(圖中信息不完整).
捐款戶數(shù)分組統(tǒng)計表
組別 | 捐款額(x)元 | 戶數(shù) |
A | 1≤x<100 | 2 |
B | 100≤x<200 | 10 |
C | 200≤x<300 | c |
D | 300≤x<400 | d |
E | x≥400 | e |
請結(jié)合以上信息解答下列問題:
(1)本次調(diào)查的樣本容量是______;
(2)d=______,并補全圖1;
(3)圖2中,“B”所對應(yīng)扇形的圓心角為______度;
(4)若該社區(qū)有500戶住戶,根據(jù)以上信息估計全社區(qū)捐款不少于300元的戶數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”
如圖所示,請根據(jù)所學(xué)知識計算:圓形木材的直徑AC是( 。
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為M,下列結(jié)論不一定成立的是( )
A.CM=DMB.
C.△OCM≌△ODMD.OM=MB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是甲、乙兩個圓柱形水槽的軸截面示意圖,乙槽中有一圓柱體鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上). 現(xiàn)將甲槽中的水勻速注入乙槽,甲、乙兩個水槽中水的深度y(厘米)與注水時間x(分鐘)之間的關(guān)系如圖2所示.①圖2中折線ABC表示___________槽中水的深度與注水時間之間的關(guān)系(選填“甲”或“乙”);②點B的縱坐標表示的實際意義是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2﹣4ax+2a(a≠0)
(1)求拋物線的對稱軸;
(2)若拋物線經(jīng)過點A(m,y1),B(n,y2),其中﹣4<m≤﹣3,2<n≤3,請依據(jù)a的取值情況直接寫出y1與y2的大小關(guān)系;
(3)若矩形CDEF的頂點分別為C(1,2),D(1,﹣4),E(5,﹣4),F(5,2),若該拋物線與矩形的邊有且只有兩個公共點(包括矩形的頂點),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店在“讀書節(jié)”之前,圖書按標價銷售,在“讀書節(jié)”期間制定了活動計劃.
(1)“讀書節(jié)”之前小明發(fā)現(xiàn):購買5本A圖書和8本B圖書共花279元,購買10本A圖書比購買6本B圖書多花162元,請求出A、B圖書的標價;
(2)“讀書節(jié)”期間書店計劃用不超過3680元購進A、B圖書共200本,且A圖書不少于50本,A、B兩種圖書進價分別為24元、16元;銷售時準備A圖書每本降價1.5元,B圖書價格不變,那么書店如何進貨才能使利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點、點分別在線段、線段上運動(不包含端點),以為邊作平行四邊形,點從向運動,速度為每秒個單位長度,點從向運動,速度為每秒個單位長度,兩點同時出發(fā),當(dāng)一個點到達終點時,兩點都停止運動,運動時間為秒.
(1)__ , __ _; (用表示)
(2)當(dāng)平行四邊形為菱形時,求出值;
(3)點能否落在線段上?若能,求出
(4)當(dāng)分別與線段交于兩點時,求長度的范圍;
(5)平行四邊形的面積能否為面積的一半,若能,請求出值,若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com