【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C,連接 AC、OD交于點(diǎn)E.
(1)若tan∠ABC=2,證明:DA與⊙O相切:
(2)在(1)條件下,連接BD交⊙O于點(diǎn)F,連接EF,若BC=1,求EF的長(zhǎng).
【答案】(1)證明見解析;(2)EF=
【解析】
(1)連接OC,證△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB為直徑知BC⊥AC,從而證明OD∥BC;再根據(jù)tan∠ABC=2可設(shè)BC=a、則AC=2a、AD=AB=,證OE為中位線知OE=a、AE=CE=AC=a,進(jìn)一步求得DE=,再在△AOD中利用勾股定理逆定理證∠OAD=90°即可得;
(2)先證△AFD∽△BAD得DFBD=AD2 ①,再證△AED∽△OAD得ODDE=AD2 ②,由①②得DFBD=ODDE,即,結(jié)合∠EDF=∠BDO知△EDF∽△BDO,據(jù)此可得,結(jié)合(1)可得相關(guān)線段的長(zhǎng),代入計(jì)算可得.
解:(1)連接OC,
在△OAD和△OCD中,
,
∴△OAD≌△OCD(SSS),
∴∠ADO=∠CDO,
又AD=CD,
∴DE⊥AC,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∴∠ACB=90°,即BC⊥AC,
∴OD∥BC,
∵tan∠ABC=,
∴設(shè)BC=a、則AC=2a,
∴AD=AB=,
∵OE∥BC,且AO=BO,
∴OE=BC=a,AE=CE=AC=a,
在△AED中,DE=,
在△AOD中,AO2+AD2=()2+()2=,
OD2=(OE+DE)2=(a+2a)2=,
∴AO2+AD2=OD2,
∴∠OAD=90°,
則DA與⊙O相切;
(2)連接AF,
∵AB是⊙O的直徑,
∴∠AFD=∠BAD=90°,
∵∠ADF=∠BDA,
∴△AFD∽△BAD,
∴,即DFBD=AD2 ①,
又∵∠AED=∠OAD=90°,∠ADE=∠ODA,
∴△AED∽△OAD,
∴,即ODDE=AD2 ②,
由①②可得DFBD=ODDE,即,
又∵∠EDF=∠BDO,
∴△EDF∽△BDO,
∵BC=1,
∴AB=AD=,OD=,ED=2,BD=,OB=,
∴,即,
解得:EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,M為BC上一點(diǎn),連接AM交對(duì)角線BD于點(diǎn)G,并且∠ABM=2∠BAM.
(1)求證:AG=BG;
(2)若點(diǎn)M為BC的中點(diǎn),同時(shí)S△BMG=1,求三角形ADG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校九年級(jí)二班的同學(xué)參加課外活動(dòng)的情況為樣本,對(duì)其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動(dòng)的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.
(1)參加音樂類活動(dòng)的學(xué)生人數(shù)為 人,參加球類活動(dòng)的人數(shù)的百分比為 ;
(2)請(qǐng)把圖2(條形統(tǒng)計(jì)圖)補(bǔ)充完整;
(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為 ;
(4)該班參加舞蹈類活動(dòng)的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請(qǐng)用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=﹣與一次函數(shù)y=﹣x+2的圖象交于A、B兩點(diǎn).
(1)試求A、B兩點(diǎn)的坐標(biāo);
(2)直線AB交y軸于點(diǎn)C,求tan∠AOC的值;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的邊OA在x軸上,OA=10cm,OC在y軸上,且OC=4cm,P為OA 的中點(diǎn),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),沿著CB以每秒1cm的速度運(yùn)動(dòng)(Q到B點(diǎn)時(shí)停止運(yùn)動(dòng)),當(dāng)△OPQ是以OP為腰的等腰三角形時(shí),點(diǎn)Q的運(yùn)動(dòng)時(shí)間=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)是(1,n),與y軸的交點(diǎn)在(0,3)和(0,6)之間(包含端點(diǎn)),則下列結(jié)論錯(cuò)誤的是( )
A.3a+b<0B.﹣2≤a≤﹣lC.abc>0D.9a+3b+2c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示的雙曲線是函數(shù)(m為常數(shù),x>0)圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與一次函數(shù)y=x+1的圖象在第一象限的交點(diǎn)為A(2,n),求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,扇形AOB中,∠AOB=120°,OA=2,若以A為圓心,OA長(zhǎng)為半徑畫弧交弧AB于點(diǎn)C,過(guò)點(diǎn)C作CD⊥OA,垂足為D,則圖中陰影部分的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),點(diǎn),直線,直線,直線經(jīng)過(guò)拋物線的頂點(diǎn),且與相交于點(diǎn),直線與軸、軸分別交于點(diǎn)、,若把拋物線上下平移,使拋物線的頂點(diǎn)在直線上(此時(shí)拋物線的頂點(diǎn)記為),再把拋物線左右平移,使拋物線的頂點(diǎn)在直線上(此時(shí)拋物線的頂點(diǎn)記為).
(1)求拋物線的解析式.
(2)判斷以點(diǎn)為圓心,半徑長(zhǎng)為4的圓與直線的位置關(guān)系,并說(shuō)明理由.
(3)設(shè)點(diǎn)、在直線上(點(diǎn)在點(diǎn)的下方),當(dāng)與相似時(shí),求、的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com