【題目】如圖,矩形OABC的邊OAx軸上,OA=10cm,OCy軸上,且OC=4cm,POA 的中點(diǎn),動(dòng)點(diǎn)QC點(diǎn)出發(fā),沿著CB以每秒1cm的速度運(yùn)動(dòng)(QB點(diǎn)時(shí)停止運(yùn)動(dòng)),當(dāng)△OPQ是以OP為腰的等腰三角形時(shí),點(diǎn)Q的運(yùn)動(dòng)時(shí)間=_______

【答案】2秒或3秒或8

【解析】

OQ=OPOP=QP兩種情況分別討論,再結(jié)合勾股定理求解即可.

解:∵四邊形OABC為矩形,
∴∠OCQ=90°
OA=10,OC=4POA的中點(diǎn),
OP=5,
當(dāng)OQ=OP=5時(shí),
CQ=

t=3;
當(dāng)OP=QP時(shí),如圖,作PHBCH
若點(diǎn)Q在點(diǎn)H左側(cè),
∵∠POC=OCH=CHP=90°,
∴四邊形POCH為矩形,
PH=OC=4,CH=OP=5,
QH=,

CQ=CH-QH=5-3=2,即t=2
若點(diǎn)Q在點(diǎn)H右側(cè),同理可得,CQ=5+3=8,即t=8
故答案為:2秒或3秒或8秒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC中,∠ACB=90°AC=BC=8,點(diǎn)A在半徑為5的⊙O上,點(diǎn)O在直線l上.

(1)如圖①,若⊙O經(jīng)過(guò)點(diǎn)C,交BC于點(diǎn)D,求CD的長(zhǎng).

(2)(1)的條件下,若BC邊交l于點(diǎn)E,OE=2,求BE的長(zhǎng).

(3)如圖②,若直線l還經(jīng)過(guò)點(diǎn)CBC是⊙O 的切線,F為切點(diǎn),則CF的長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:

1)求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)求每天的銷售利潤(rùn)W(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價(jià)為多少時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

3)該經(jīng)銷商想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,其對(duì)稱軸是x=﹣1,且過(guò)點(diǎn)(﹣3,0),下列說(shuō)法:abc0②2ab0;③4a+2b+c0若(﹣5,y1),(3,y2)是拋物線上兩點(diǎn),則y1y2,其中說(shuō)法正確的是( 。

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“佳佳商場(chǎng)”在銷售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷售量就將減少2件.

(1)為了實(shí)現(xiàn)每天1600元的銷售利潤(rùn),“佳佳商場(chǎng)”應(yīng)將這種商品的售價(jià)定為多少?

(2)物價(jià)局規(guī)定該商品的售價(jià)不能超過(guò)40元/件,“佳佳商場(chǎng)”為了獲得最大的利潤(rùn),應(yīng)將該商品售價(jià)定為多少?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C,連接 AC、OD交于點(diǎn)E

(1)tanABC=2,證明:DA與⊙O相切:

(2)(1)條件下,連接BD交⊙O于點(diǎn)F,連接EF,若BC=1,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160花卉的平均每盆利潤(rùn)是19,調(diào)研發(fā)現(xiàn):

①盆景每增加1盆景的平均每盆利潤(rùn)減少2;每減少1,盆景的平均每盆利潤(rùn)增加2;②花卉的平均每盆利潤(rùn)始終不變.

小明計(jì)劃第二期培植盆景與花卉共100,設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí)第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC是等邊三角形,點(diǎn)D是△ABC(包含邊界)平面內(nèi)一點(diǎn),連接CD,將線段CDC逆時(shí)針旋轉(zhuǎn)60°得到線段CE,連接BEDE,AD,并延長(zhǎng)ADBE于點(diǎn)P

1)觀察填空:當(dāng)點(diǎn)D在圖1所示的位置時(shí),填空:

①與△ACD全等的三角形是______

②∠APB的度數(shù)為______

2)猜想證明:在圖1中,猜想線段PDPE,PC之間有什么數(shù)量關(guān)系?并證明你的猜想.

3)拓展應(yīng)用:如圖2,當(dāng)△ABC邊長(zhǎng)為4,AD=2時(shí),請(qǐng)直接寫出線段CE的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為M,下列結(jié)論不一定成立的是( )

A.CM=DMB.

C.△OCM≌△ODMD.OM=MB

查看答案和解析>>

同步練習(xí)冊(cè)答案