【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是拋物線上兩點,則y1<y2,其中說法正確的是( 。
A.①②B.②③C.①②④D.②③④
【答案】A
【解析】
根據(jù)拋物線開口方向得到a>0,根據(jù)拋物線的對稱軸得b=2a>0,則2a﹣b=0,則可對②進(jìn)行判斷:根據(jù)拋物線與y軸的交點在x軸下方得到c<0,則abc<0,于是可對①進(jìn)行判斷,由于x=2時,y>0,則得到4a+2b+c>0,則可對③進(jìn)行判斷,通過點(﹣5,y1)和點(3,y2)離對稱軸的遠(yuǎn)近對④進(jìn)行判斷.
解:∵拋物線開口向上,
∴a>0,
∵拋物線對稱軸為直線x=﹣=﹣1,
∴b=2a>0,則2a﹣b=0,所以②正確;
∵拋物線與y軸的交點在x軸下方,
∴c<0,
∴abc<0,所以①正確;
∵x=2時,y>0,
∴4a+2b+c>0,所以③錯誤;
∵點(﹣5,y1)離對稱軸的距離與點(3,y2)離對稱軸的距離相等,
∴y1=y2,所以④不正確.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市平時每天都將一定數(shù)量的白糖和紅糖進(jìn)行包裝以便出售,已知每天包裝白糖的質(zhì)量是包裝紅糖質(zhì)量的倍,且每天包裝白糖和紅糖的質(zhì)量之和為45千克.
(1)求平均每天包裝白糖和紅糖的質(zhì)量各是多少千克?
(2)為迎接今年6月25日的“端午節(jié)”,該超市決定在前20天增加每天包裝白糖和紅糖的質(zhì)量,二者的包裝質(zhì)量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復(fù)到原來每天的包裝質(zhì)量.直接寫出在這20天內(nèi)每天包裝白糖和紅糖的質(zhì)量隨天數(shù)變化的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)假設(shè)該超市每天都會將當(dāng)天包裝后的白糖和紅糖全部售出,已知白糖的成本價為每千克3.9元,紅糖的成本每千克5.5元,二者包裝費用平均每千克均為0.5元,白糖售價為每千克6元,紅糖售價為每千克8元,那么在這20天中有哪幾天銷售白糖和紅糖的利潤之和大于120元?[總利潤=售價額﹣成本﹣包裝費用].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)拓展課《折疊矩形紙片》上,小林折疊矩形紙片ABCD進(jìn)行如下操作:①把△ABF翻折,點B落在CD邊上的點E處,折痕AF交BC邊于點F;②把△ADH翻折,點D落在AE邊長的點G處,折痕AH交CD邊于點H.若AD=6,AB=10,則的值是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD≌△ACE;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,FC之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計劃購進(jìn)一批新能源汽車嘗試進(jìn)行銷售,據(jù)了解2輛A型汽車、3輛B型汽氣車的進(jìn)價共計80萬元;3輛A型汽車、2輛B型汽車的進(jìn)價共計95萬元.
(1)求A、B兩種型號的汽車每輛進(jìn)價分別為多少方元?
(2)若該公司計劃正好用200萬元購進(jìn)以上兩種型號的新能源汽車(兩種型號的汽車均購買),請你幫助該公司設(shè)計購買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品1件和乙商品3件共需240元;購進(jìn)甲商品2件和乙商品1件共需130元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結(jié)AP并延長AP交CD于F點,連結(jié)CP并延長CP交AD于Q點.給出以下結(jié)論:
①四邊形AECF為平行四邊形;
②∠PBA=∠APQ;
③△FPC為等腰三角形;
④△APB≌△EPC.
其中正確結(jié)論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y1=ax2﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2.
(1)求拋物線y2的解析式;
(2)如圖2,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標(biāo);若不存在,請說明理由;
(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y2于點Q,點Q關(guān)于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:如何將一個長為17,寬為1的長方形經(jīng)過剪一剪,拼一拼,形成一個正方形.(下列所有圖中每個小方格的邊長都為1,剪拼過程中材料均無剩余)
問題探究:我們從長為5,寬為1的長方形入手.
(1)如圖①是一個長為5,寬為1的長方形.把這個長方形剪一剪、拼一拼后形成正方形,則正方形的面積應(yīng)為_____________,設(shè)正方形的邊長為,則_________;
(2)我們可以把有些帶根號的無理數(shù)的被開方數(shù)表示成兩個正整數(shù)平方和的形式,比如.類比此,可以將(1)中的表示成_____________;
(3)的幾何意義可以理解為:以長度2和3為直角邊的直角三角形的斜邊長為;類比此,(2)中的可以理解為以長度________和__________為直角邊的直角三角形斜邊的長;
(4)剪一剪:由(3)可畫出如圖②的分割線,把長方形分成五部分;
(5)拼一拼:把圖②中五部分拼接得到如圖③的正方形;
問題解決:仿照上面的探究方法請把圖④中長為17,寬為1的長方形剪一剪,在圖⑤中畫出拼成的正方形.(說明:圖④的分割過程不作評分要求,只對圖⑤中畫出的最終結(jié)果評分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com