【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( )
A. 80°; B. 90°; C. 100°; D. 110°;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,在中,,,垂足為點,有下列說法:①點與點的距離是線段的長;②點到直線的距離是線段的長;③線段是邊上的高;④線段是邊上的高.
上述說法中,正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①倒數(shù)等于本身的數(shù)是±1;②互為相反數(shù)的兩個非零數(shù)的商為﹣1;③如果兩個數(shù)的絕對值相等,那么這兩個數(shù)相等;④有理數(shù)可以分為正有理數(shù)和負有理數(shù);⑤單項式﹣的系數(shù)是﹣,次數(shù)是6;⑥多項式3πa3+4a2﹣8是三次三項式,其中正確的個數(shù)是( )
A. 2 個B. 3 個C. 4 個D. 5 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,萬州市居民生活用水按階梯式水價計費,表是該市居民“一戶一表”生活用水階梯式計費價格表的一部分信息:(水價計費自來水銷售費用污水處理費用)
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元噸 | 單價:元噸 |
17噸及以下 | 0.80 | |
超過17噸不超過30噸的部分 | 0.80 | |
超過30噸的部分 | 6.00 | 0.80 |
說明:①每戶產(chǎn)生的污水量等于該戶的用水量,②水費=自來水費+污水處理費;
已知小明家2013年3月份用水20噸,交水費66元;5月份用水25噸,交水費91元.
(1)求,的值.
(2)隨著夏天的到來,用水量將增加。為了節(jié)省開支,小夢計劃把6月份的水費控制在不超過家庭月收入的2%,若小夢加的月收入為9200元,則小王家6月份最多能用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角板ABC中,∠ACB=90°,∠B=30°,AC=2 ,三角板繞直角頂點C逆時針旋轉(zhuǎn),當(dāng)點A的對應(yīng)點A′落在AB邊的起始位置上時即停止轉(zhuǎn)動,則B點轉(zhuǎn)過的路徑長為( )
A. π
B. π
C.2π
D.3π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到 達圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.
(2)請你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達式;
(3)若設(shè)兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各多少萬元.
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點P是射線AM上一動點(與點A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點P運動時,∠APB:∠ADB的比值是否隨之變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;
(3)當(dāng)點P運動到某處時,∠ACB=∠ABD,求此時∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,解決提出的問題:
最短路徑問題:如圖(1),點A,B分別是直線l異側(cè)的兩個點,如何在直線l上找到一個點C,使得點C到點A,點B的距離和最短?我們只需連接AB,與直線l相交于一點,可知這個交點即為所求.
如圖(2),如果點A,B分別是直線l同側(cè)的兩個點,如何在l上找到一個點C,使得這個點到點A、點B的距離和最短?我們可以利用軸對稱的性質(zhì),作出點B關(guān)于的對稱點B,這時對于直線l上的任一點C,都保持CB=CB,從而把問題(2)變?yōu)閱栴}(1).因此,線段AB與直線l的交點C的位置即為所求.
為了說明點C的位置即為所求,我們不妨在直線上另外任取一點C′,連接AC′,BC′,B′C′.因為AB′≤AC′+C′B′,∴AC+CB<AC'+C′B,即AC+BC最。
任務(wù):
數(shù)學(xué)思考
(1)材料中劃線部分的依據(jù)是 .
(2)材料中解決圖(2)所示問題體現(xiàn)的數(shù)學(xué)思想是 .(填字母代號即可)
A.轉(zhuǎn)化思想
B.分類討論思想
C.整體思想
遷移應(yīng)用
(3)如圖,在Rt△ABC中,∠C=90°,∠BAC=15°,點P為C邊上的動點,點D為AB邊上的動點,若AB=8cm,則BP+DP的最小值為 cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com