【題目】已知:如圖,平行四邊形ABCD中,M、N分別為AB和CD的中點(diǎn).
(1)求證:四邊形AMCN是平行四邊形;
(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.
【答案】(1)見解析;(2)12.
【解析】
(1)由題意可得AB∥CD,AB=CD,又由M,N分別是AB和CD的中點(diǎn)可得AM=∥CN,即可得結(jié)論;
(2)根據(jù)等腰三角形的性質(zhì)可得CM⊥AB,AM=3,根據(jù)勾股定理可得CM=4,則可求面積.
(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∵M,N分別為AB和CD的中點(diǎn),
∴AM=AB,CN=CD,
∴AM=CN,且AB∥CD,
∴四邊形AMCN是平行四邊形;
(2)∵AC=BC=5,AB=6,M是AB中點(diǎn),
∴AM=MB=3,CM⊥AM,
∴CM=,
∵四邊形AMCN是平行四邊形,且CM⊥SM,
∴AMCN是矩形,
∴S四邊形AMCN=12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校實(shí)施新課程改革以來(lái),學(xué)生的學(xué)習(xí)能力有了很大提高,王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對(duì)該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖①②).請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,王老師一共調(diào)查了________名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請(qǐng)用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】提出問(wèn)題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,若AE⊥DH于點(diǎn)O,求證:AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 ,在平行四邊形 ABCD 中,對(duì)角線 AC 、 BD 交于點(diǎn) O ,并且 DAC 60 ,ADB 15 ,點(diǎn) E 是 AD 上一動(dòng)點(diǎn),延長(zhǎng) EO 交 BC 于點(diǎn) F 。當(dāng)點(diǎn) E 從 D 點(diǎn)向 A 點(diǎn)移動(dòng) 過(guò)程中(點(diǎn) E 與點(diǎn) D 、點(diǎn) A 不重合),則四邊形 AFCE 的變化是( )
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
C.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
D.平行四邊形→矩形→菱形→正方形→平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形三個(gè)內(nèi)角的度數(shù)之和是180°,如圖是兩個(gè)三角板不同位置的擺放,其中∠ACB=∠CDE=90°,∠BAC=60°,∠DEC=45°.
(1)當(dāng)AB∥CD時(shí),如圖①,求∠DCB的度數(shù);
(2)當(dāng)CD與CB重合時(shí),如圖②,判斷DE與AC的位置關(guān)系并說(shuō)明理由;
(3)如圖③,當(dāng)∠DCB= 時(shí),AB∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下表,回答問(wèn)題:
x | … | -2 | -1 | 0 | 1 | 2 | … |
-2x+5 | … | 9 | 7 | 5 | 3 | a | … |
2x+8 | … | 4 | 6 | 8 | 10 | b | … |
(初步感知)
(1)a= ;b= ;
(歸納規(guī)律)
(2)隨著x值的變化,兩個(gè)代數(shù)式的值變化規(guī)律是什么?
(問(wèn)題解決)
(3)比較-2x+5與2x+8的大小;
(4)請(qǐng)寫出一個(gè)含x的代數(shù)式,要求x的值每增加1,代數(shù)式的值減小5,當(dāng)x=0時(shí),
代數(shù)式的值為-7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=mx(m為常數(shù))與雙曲線y=(k為常數(shù))相交于A、B兩點(diǎn).
(1)若點(diǎn)A的橫坐標(biāo)為3,點(diǎn)B的縱坐標(biāo)為﹣4
①直接寫出:k=____,m=____;
②點(diǎn)C在第一象限內(nèi)是雙曲線y=的點(diǎn),當(dāng)S△OAC=9時(shí),求點(diǎn)C的坐標(biāo);
(2)將直線y=mx向右平移得到直線y=mx+b,交雙曲線y=于點(diǎn)E(4,y1)和F(﹣2,y2),直接寫出不等式mx2+bx<k的解集:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】瑩瑩家里今年種植的獼猴桃獲得大豐收,星期六從外地來(lái)了一位客商到村子里收購(gòu)獼猴桃.瑩瑩家賣給了該客商10箱獼猴桃.瑩瑩在家里幫助爸爸記賬,每標(biāo)準(zhǔn)箱獼猴桃的凈重為5千克,超過(guò)標(biāo)準(zhǔn)數(shù)的部分記為“+”,不足標(biāo)準(zhǔn)數(shù)的部分記為“﹣”,瑩瑩的記錄如下:+0.4、+0.6、﹣0.2、+0.1、﹣0.6、﹣0.3、+0.4、0、+0.7、﹣0.3.
(1)請(qǐng)計(jì)算這10箱獼猴桃的總重為多少千克?
(2)如果彌猴桃的價(jià)格為9元/千克,瑩瑩家出售這10箱獼猴桃共收入多少元?(精確到1元)
(3)若都用這種紙箱裝,瑩瑩家的獼猴桃共能裝約2000箱,按照目前這個(gè)價(jià)格,把獼猴桃全部出售,瑩瑩家大約能收入多少元?(精確到萬(wàn)位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】佳佳想探究一元三次方程x3+2x2-x-2=0的解的情況.根據(jù)以往的學(xué)習(xí)經(jīng)驗(yàn)他想到了方程與函數(shù)的關(guān)系:一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一次方程kx+b=0(k≠0)的解;二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元二次方程ax2+bx+c=0(a≠0)的解.如:二次函數(shù)y=x2-2x-3的圖象與x軸的交點(diǎn)為(-1,0)和(3,0),交點(diǎn)的橫坐標(biāo)-1和3即為方程x2-2x-3=0的解.
根據(jù)以上方程與函數(shù)的關(guān)系,若知道函數(shù)y=x3+2x2-x-2的圖象與x軸交點(diǎn)的橫坐標(biāo),即可知道方程x3+2x2-x-2=0的解.
佳佳為了解函數(shù)y=x3+2x2-x-2的圖象,通過(guò)描點(diǎn)法畫出函數(shù)的圖象:
(1)直接寫出m的值________,并畫出函數(shù)圖象;
(2)根據(jù)表格和圖象可知,方程的解有________個(gè),分別為________________;
(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com