【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為( )
A. 4 B. 3 C. 2 D.
【答案】B
【解析】
分析: 首先根據(jù)A,B兩點(diǎn)的橫坐標(biāo),求出A,B兩點(diǎn)的坐標(biāo),進(jìn)而根據(jù)AC//BD// y 軸,及反比例函數(shù)圖像上的點(diǎn)的坐標(biāo)特點(diǎn)得出C,D兩點(diǎn)的坐標(biāo),從而得出AC,BD的長,根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為,列出方程,求解得出答案.
詳解: 把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y軸,
∴C(1,K),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC與△ABD的面積之和為,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案為B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達(dá)式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列問題:
(1)若 n(n≠0)是關(guān)于 的方程 x+mx-2n=0的根,求 m+n的值;
(2)已知 , 為實(shí)數(shù),且 y=2,求 2x-3y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,),過點(diǎn)E的直線l交x軸于點(diǎn)F,交y軸于點(diǎn)G(0,-2),則點(diǎn)F的坐標(biāo)是( )
A. (,0)B. (,0)C. (,0)D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個(gè)“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)邊長分別為a,b(a>b)的正方形連在一起,三點(diǎn)C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點(diǎn)E.若OB2﹣BE2=8,則k的值是( 。
A. 3 B. 4 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
(1)(問題解決)延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷出中線AD的取值范圍是 .
(反思感悟)解題時(shí),條件中若出現(xiàn)“中點(diǎn)”、“中線”字樣,可以考慮構(gòu)造以該中點(diǎn)為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個(gè)三角形中,從而解決問題.
(2)(嘗試應(yīng)用)如圖②,△ABC中,∠BAC=90°,AD是BC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關(guān)系,并說明理由.
(3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,D是BC的中點(diǎn),DM⊥DN,DM交AB于點(diǎn)M,DN交AC于點(diǎn)N,連接MN.當(dāng)BM=4,MN=5,AC=6時(shí),請直接寫出中線AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知函數(shù)y=(k>0,x>0)的圖象與一次函數(shù)y=mx+5(m<0)的圖象相交不同的點(diǎn)A、B,過點(diǎn)A作AD⊥x軸于點(diǎn)D,連接AO,其中點(diǎn)A的橫坐標(biāo)為x0,△AOD的面積為2.
(1)求k的值及x0=4時(shí)m的值;
(2)記[x]表示為不超過x的最大整數(shù),例如:[1.4]=1,[2]=2,設(shè)t=ODDC,若﹣<m<﹣,求[m2t]值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,AB=3cm,以 B 為圓心,1cm 長為半徑畫☉B,點(diǎn) P 在☉B 上移動,連接 AP,并將 AP 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn) 90°至 AP',連接 BP',在點(diǎn) P 移動過程中,BP' 長度的最小值為________cm。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com