【題目】已知,如圖,在△ ABC中,AD,AE分別是 ABC的高和角平分線,若∠B=30°,∠C=50°.

(1)求∠DAE的度數(shù).

(2)試寫出 DAE與∠C-B有何關系?(不必證明)

【答案】(1)10°;(2C-B=2DAE

【解析】

(1)根據(jù)三角形內(nèi)角和等于180°求出∠BAC的度數(shù),然后根據(jù)AE是角平分線求出∠CAE的度數(shù),在ACD中,利用直角三角形兩銳角互余求出∠CAD的度數(shù),兩角相減即可求解;
(2)同(1)的思路整理即可.

(1)∵∠B=30°,C=50°,

∴∠BAC=180°-30°-50°=100°.

AE是∠BAC的平分線,

∴∠BAE=50°.

RtABD中,∠BAD=90°-B=60°,

∴∠DAE=BAD-BAE=60°-50=10°;

(2)C-B=2DAE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在彈性限度內(nèi),彈簧掛上物體后會伸長,測得一彈簧的長度y(cm)與所掛物體的質量x(kg)之間的關系如下表,下列說法不正確的是(  )

x/kg

0

1

2

3

4

5

y/cm

20

20.5

21

21.5

22

22.5

A. xy都是變量,且x是自變量,yx的函數(shù)

B. 彈簧不掛重物時的長度為0 cm

C. 物體質量每增加1 kg,彈簧長度y增加0.5 cm

D. 所掛物體質量為7 kg時,彈簧長度為23.5 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,連接在一起的兩個等邊三角形的邊長都為2cm,一個微型機器人由點A開始按A→B→C→D→E→C→A→B→C…的順序沿等邊三角形的邊循環(huán)移動.當微型機器人移動了2018cm后,它停在了點_____上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組與方程
(1)解不等式組
(2)解方程: = ﹣3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=65°,∠B=75°,將△ABC沿EF對折,使C點與C′點重合.當∠1=45°時,∠2=________°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把兩個大小相等,形狀相同的兩個三角形稱之為全等三角形,如果兩個三角形僅僅是形狀相同,我們可以稱之為相似三角形,如圖①△ABC與△DEF形狀相同,我們就可以說△ABC 與△DEF相似,記作△ABC∽△DEF,點A與點D、點B與點E、點C與點F分別是對應點。下面我們就相似三角形的知識進行一些簡單的探索。

(1)觀察下列圖②兩組圖形,相似的一組是 。

(2)如圖③,小明用一張紙遮住了3個三角形的一部分,你是可以畫出這3個三角形的。

提出問題:①如圖,如果A=∠C,∠B=∠DABCD,那么第一個三角形與第二個三角形全等嗎?你的判斷是 ,(填“是”或“否”)判斷的依據(jù)是 。

②如圖,如果A=∠E,∠B=∠F,2ABEF,那么第一個三角形與第三個三角形相似嗎?你的判斷是 ,(填“是”或“否”)

(3)由(1)、(2)你可以得出的結論是: 個角分別相等的兩個三角形相似。

(4)用(3)的結論解決下面兩個問題.

①已知:如圖,AB∥CD。AD與BC相交于點O,試說明△ABO∽△DCO。

②已知:如圖,在△ABC中,點D、E、F分別在邊BC、AB、AC上,∠B=∠C=∠EDF,試說明△BDE∽△CFD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊等腰直角的三角板ABC,在水平桌面上繞點C按順時針方向旋轉到A′B′C的位置,使A、C、B′三點共線,那么旋轉角度的大小為( )

A.45°
B.90°
C.120°
D.135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,D是BC邊上一點∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度數(shù).

查看答案和解析>>

同步練習冊答案