【題目】解不等式組與方程
(1)解不等式組
(2)解方程: = ﹣3.

【答案】
(1)解: ,

解①得x<3,

解②得x≥

則不等式組的解集是: ≤x<3;


(2)解:去分母,得﹣1=1﹣x﹣3(2﹣x),

去括號,得﹣1=1﹣x﹣6+3x,

移項,得﹣3x+x=1﹣6+1,

合并同類項,得﹣2x=﹣4,

系數(shù)化成1得x=2,

檢驗:當x=2時,2﹣x=0,則方程無解.


【解析】(1)首先解每個不等式,兩個不等式解集的公共部分就是不等式組的解集;(2)去分母化成整式方程,解整式方程求得x的值,然后進行檢驗即可.
【考點精析】根據(jù)題目的已知條件,利用一元一次不等式組的解法的相關(guān)知識可以得到問題的答案,需要掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=14,BC=8,點E為邊BC上一點,且BE=5,將紙片沿過點E的一條直線l翻折,使點B落在直線CD上,若l與矩形的邊的另一個交點為F,則EF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A(﹣1,0)、B(3,0)兩點,交y軸于點C,連接BC,動點P以每秒1個單位長度的速度從A向B運動,動點Q以每秒 個單位長度的速度從B向C運動,P、Q同時出發(fā),連接PQ,當點Q到達C點時,P、Q同時停止運動,設(shè)運動時間為t秒.

(1)求二次函數(shù)的解析式;
(2)如圖1,當△BPQ為直角三角形時,求t的值;
(3)如圖2,過點Q作QN⊥x軸于N,交拋物線于點M,連結(jié)MC,MB,當t為何值時,△MCB的面積最大,并求出此時點M的坐標和△MCB面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰RtABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點CCEAD于點E.

(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;

(2)如圖2,過點CCFCE,且CF=CE,連接BF,

求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是以原點為圓心,2為半徑的圓,點P是直線y=﹣x+4上的一點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,A=40°B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在△ ABC中,AD,AE分別是 ABC的高和角平分線,若∠B=30°,∠C=50°.

(1)求∠DAE的度數(shù).

(2)試寫出 DAE與∠C-B有何關(guān)系?(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了預(yù)測九年級男生“排球30秒”對墻墊球的情況,從本校九年級隨機抽取了n名男生進行該項目測試,并繪制出如下的頻數(shù)分布直方圖,其中從左到右依次分為七個組(每組含最小值,不含最大值).根據(jù)統(tǒng)計圖提供的信息解答下列問題:

(1)求n的值.
(2)這個樣本數(shù)據(jù)的中位數(shù)落在第組.
(3)若測試九年級男生“排球30秒”對墻墊球個數(shù)不低于10個為合格,根據(jù)統(tǒng)計結(jié)果,估計該校九年級450名男同學成績合格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次高爾夫球比賽中,小明從山坡下O點打出一球向球洞A點飛去,球的飛行路線為拋物線,如果不考慮空氣阻力,當球達到最大高度10m時,球移動的水平距離為8m.已知山坡OA與水平方向OC的夾角為30°,OC=12m.

(1)求點A的坐標;
(2)求球的飛行路線所在拋物線的解析式;
(3)判斷小明這一桿能否把高爾夫球從O點直接打入球洞A點.

查看答案和解析>>

同步練習冊答案