【題目】若二次函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,我們就稱其中一個(gè)函數(shù)是另一個(gè)函數(shù)的中心對(duì)稱函數(shù),也稱函數(shù)互為中心對(duì)稱函數(shù).

求函數(shù)的中心對(duì)稱函數(shù);

如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點(diǎn)的坐標(biāo)分別為,,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)E和原點(diǎn)O,頂點(diǎn)為已知函數(shù)互為中心對(duì)稱函數(shù);

請(qǐng)?jiān)趫D中作出二次函數(shù)的頂點(diǎn)作圖工具不限,并畫(huà)出函數(shù)的大致圖象;

當(dāng)四邊形EPFQ是矩形時(shí),請(qǐng)求出a的值;

已知二次函數(shù)互為中心對(duì)稱函數(shù),且的圖象經(jīng)過(guò)的頂點(diǎn)當(dāng)時(shí),求代數(shù)式的最大值.

【答案】;畫(huà)圖見(jiàn)解析;a的值為;當(dāng)時(shí),有最大值,最大值為3.

【解析】

利用配方法得到,則此拋物線的頂點(diǎn)坐標(biāo)為,利用中心對(duì)稱的性質(zhì)得點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為,然后利用頂點(diǎn)式寫(xiě)出函數(shù)的中心對(duì)稱函數(shù)解析式;

作P點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)得到q點(diǎn),然后大致畫(huà)出頂點(diǎn)為Q,經(jīng)過(guò)原點(diǎn)和F點(diǎn)的拋物線;

利用矩形的性質(zhì)得,則利用拋物線的對(duì)稱性得到,則可判定為等邊三角形,作于H,如圖,易得,所以,設(shè)交點(diǎn)式,然后把P點(diǎn)坐標(biāo)代入即可得到a的值;

化為頂點(diǎn)式得到拋物線的頂點(diǎn)坐標(biāo)為,利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征得到拋物線的頂點(diǎn)坐標(biāo)為,再把代入,所以,然后利用二次函數(shù)的性質(zhì)解決問(wèn)題.

,

此拋物線的頂點(diǎn)坐標(biāo)為,

點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為,

函數(shù)的中心對(duì)稱函數(shù)為,即;

如圖,

四邊形EPFG為矩形,

,

為等邊三角形,

H,如圖,

,

設(shè)二次函數(shù)的解析式為,

代入得,解得,

a的值為;

,

拋物線的頂點(diǎn)坐標(biāo)為

拋物線的頂點(diǎn)與拋物線的頂點(diǎn)關(guān)于原點(diǎn)對(duì)稱,

拋物線的頂點(diǎn)坐標(biāo)為,

代入,解得,

當(dāng)時(shí),有最大值,最大值為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形中,邊上一點(diǎn),點(diǎn)出發(fā)以秒的速度沿線段運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),沿線段、射線運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到,兩點(diǎn)都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒):

1)當(dāng)的速度相同,且時(shí),求證:

2)當(dāng)的速度不同,且分別在上運(yùn)動(dòng)時(shí)(如圖1),若全等,求此時(shí)的速度和值;

3)當(dāng)運(yùn)動(dòng)到上,運(yùn)動(dòng)到射線上(如圖2),若的速度為秒,是否存在恰當(dāng)?shù)倪?/span>的長(zhǎng),使在運(yùn)動(dòng)過(guò)程中某一時(shí)刻剛好全等,若存在,請(qǐng)求出此時(shí)的值和邊的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)O,過(guò)點(diǎn)ODEBC,分別交ABAC于點(diǎn)D、E

1)△BDO是等腰三角形嗎?請(qǐng)說(shuō)明理由.

2)若AB=10,AC=6,求△ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,厘米,厘米,點(diǎn)的中點(diǎn),點(diǎn)在線段上以4厘米/秒的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng),若點(diǎn)的運(yùn)動(dòng)速度為厘米/秒,則當(dāng)全等時(shí),的值為_____厘米/秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請(qǐng)判斷BD、CE有何大小、位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD,EF分別交AB、CD于點(diǎn)E、F,EG平分∠AEF,FH平分∠EFD,求證:EGFH

證明:∵ABCD   ),

∴∠AEF=∠EFD   ),

EG平分∠AEF,FH平分∠EFD   ),

∴∠   AEF

   EFD(角平分線定義),

∴∠   =∠   

EGFH   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為原點(diǎn),A. B為數(shù)軸上兩點(diǎn),AB=15,且OA:OB=2.

(1)A、B對(duì)應(yīng)的數(shù)分別為___、___

(2)點(diǎn)A. B分別以4個(gè)單位/秒和3個(gè)單位/秒的速度相向而行,則幾秒后A. B相距1個(gè)單位長(zhǎng)度?

(3)點(diǎn)A. B(2)中的速度同時(shí)向右運(yùn)動(dòng),點(diǎn)P從原點(diǎn)O7個(gè)單位/秒的速度向右運(yùn)動(dòng),是否存在常數(shù)m,使得4AP+3OBmOP為定值,若存在請(qǐng)求出m值以及這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)C,且ADMNDBEMNE

1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:ADC≌△CEB

2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),寫(xiě)出線段DE、ADBE的數(shù)量關(guān)系,并說(shuō)明理由.

3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),直接寫(xiě)出DE、ADBE的數(shù)量關(guān)系(不用說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(m4,m+1)x軸上,將點(diǎn)A右移8個(gè)單位,上移4個(gè)單位得到點(diǎn)B

1)則m= B點(diǎn)坐標(biāo)( );

2)連接ABy軸于點(diǎn)C,則

3)點(diǎn)Dx軸上一點(diǎn),ABD的面積為12,求D點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案