【題目】如圖,正方形的對角線相交于點,的角平分線分別交、兩點,若,則線段的長為________

【答案】2

【解析】

MH⊥ACH,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,再求出AH,MH,MB,CH/CO,然后證明△CON∽△CHM,再利用相似比可計算出ON.

MH⊥ACH,如圖,

四邊形ABCD為正方形,

∴∠MAH=45°,

∴△AMH為等腰直角三角形,

∴AH=MH=,AM=×4=2,

∵CM平分∠ACB,

∴BM=MH=2

∴AB=4+2,

∴AC=AB=4+4,

∴OC=AC=+2,CH=ACAH=4+42=2+4,

∵BD⊥AC,

∴ON∥MH,

∴△CON∽△CHM,

=,=,

∴ON=2,

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,∠BAC=120°,MBC的中點,點EAB邊上的動點,點F是線段BM上的動點,則ME+EF的最小值等于___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知正方形的面積為,點在函數(shù)的圖象上,點是函數(shù)的圖象上動點,過點分別作軸、軸的垂線,垂足分別為、,若設(shè)矩形和正方形不重合的兩部分的面積和為

點坐標(biāo)和的值;

寫出關(guān)于的函數(shù)關(guān)系和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O在線段AB上,(不與端點A、B重合),以點O為圓心,OA的長為半徑畫弧,線段BP與這條弧相切與點P,直線CD垂直平分PB,交PB于點C,交AB于點D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。

(1)求證:OPED;

(2)當(dāng)∠ABP=30°時,求扇形AOP的面積,并證明四邊形PDBE是菱形;

(3)過點OOFDE于點F,如圖所示,線段EF的長度是否隨r的變化而變化?若不變,直接寫出EF的值;若變化,直接寫出EFr的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),

(1)求圍欄的長和寬;

(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(1,3)在函數(shù)的圖象上,正方形的邊軸上,點是對角線的中點,函數(shù)的圖象又經(jīng)過兩點,則點的橫坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 , ,以點為頂點、為腰在第三象限作等腰

)求點的坐標(biāo).

)如圖, 軸負半軸上一個動點,當(dāng)點沿軸負半軸向下運動時,以為頂點, 為腰作等腰,過軸于點,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩個完全相同的三角形紙片重合放置,其中,若固定,將繞點旋轉(zhuǎn).

當(dāng)繞點旋轉(zhuǎn)到點恰好落在邊上時,如圖,則此時旋轉(zhuǎn)角為________(用含的式子表示).

當(dāng)繞點旋轉(zhuǎn)到如圖所示的位置時,小楊同學(xué)猜想:的面積與的面積相等,試判斷小楊同學(xué)的猜想是否正確,若正確,請你證明小楊同學(xué)的猜想.若不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報社為了解市民對社會主義核心價值觀的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果為“A.非常了解“B.了解、“C.基本了解三個等級,并根據(jù)調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.

1)這次調(diào)查的市民人數(shù)為_____人,m=______,n=_______;

2)補全條形統(tǒng)計圖;

3)若該市約有市民1200000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市對社會主義核心價值觀達到“A.非常了解程度的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案