【題目】若拋物線與x軸的兩個交點及其頂點構成等邊三角形,則稱該拋物線為“等邊拋物線”.
(1)判斷拋物線C1:y=x2﹣2x是否為“等邊拋物線”?如果是,求出它的對稱軸和頂點坐標;如果不是,說明理由.
(2)若拋物線C2:y=ax2+2x+c為“等邊拋物線”,求ac的值;
(3)對于“等邊拋物線”C3:y=x2+bx+c,當1<x<m時,二次函數(shù)C3的圖象落在一次函數(shù)y=x圖象的下方,求m的最大值.
【答案】(1)拋物線y=x2﹣2x是“等邊拋物線”;對稱軸x=2,頂點坐標為(2,﹣2);(2)ac=﹣2;(3)m的最大值為6.
【解析】
(1)根據(jù)“等邊拋物線”的定義得到拋物線C1:y=x2﹣2x是“等邊拋物線”;然后根據(jù)拋物線的性質(zhì)求得它的對稱軸和頂點坐標;
(2)設等邊拋物線與x軸的兩個交點分別為A(x1,0),B(x2,0),知AB=|x1﹣x2|=|﹣|=||,結(jié)合頂點坐標(﹣,)知=,據(jù)此求解可得;
(3)依照(2)的方法推出b2﹣4ac=12知c=,結(jié)合等邊拋物線過(1,1)求得b=﹣6或b=2,依據(jù)對稱軸位置得b=﹣6,聯(lián)立,求得x=1或x=6,從而得出答案.
(1)拋物線y=x2﹣2x是“等邊拋物線”.對稱軸x=2,頂點坐標為(2,﹣2).理由如下:
由y=x2﹣2x=x(x﹣2)知,該拋物線與x軸的交點是(0,0),(4,0).
又因為y=x2﹣2x=(x﹣2)2﹣2,
所以其頂點坐標是(2,﹣2).
∴拋物線與x軸的兩個交點及其頂點構成等邊三角形的邊長為4,
∴拋物線y=x2﹣2x是“等邊拋物線”.
對稱軸x=2,頂點坐標為(2,﹣2);
(2)設等邊拋物線與x軸的兩個交點分別為A(x1,0),B(x2,0),
令y=ax2+bx+c=0,
∴x=,
∴AB=|x1﹣x2|=|﹣|=||=||=||.
又∵拋物線的頂點坐標為(﹣,),
∴=.
∵4﹣4ac≠0,
∴||=,
∴ac/span>=﹣2;
(3)設等邊拋物線與x軸的兩個交點分別為A(x1,0),B(x2,0),
令y=ax2+bx+c=0,
∴x=,
∴AB=|x1﹣x2|=|﹣|=
又∵拋物線的頂點坐標為,
∴.
∵,
∴,
得b2﹣4c=12,
∴c=,
∴C3:y=x2+bx+,
∵1<x<m時,總存在實數(shù)b,使二次函數(shù)C3的圖象在一次函數(shù)y=x圖象的下方,即拋物線與直線有一個交點為(1,1),
∴該等邊拋物線過(1,1),
∴1+b+=1,
解得b=﹣6或b=2,
又對稱軸x=﹣=﹣>1,
∴b<﹣2,
∴b=﹣6,
∴y=x2﹣6x+6,
聯(lián)立,
解得x=1或x=6,
∴m的最大值為6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點,連接AC、CB,過O作EO∥CB并延長EO到F,使EO=FO,連接AF并延長,AF與CB的延長線交于D.求證:AE2=FGFD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點和點(點在原點的左側(cè),點在原點的右側(cè)),與軸交于點,.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接,點是直線上方拋物線上的點,連接,.交于點,當時,求點的坐標.
(3)如圖2,點的坐標為,點是拋物線上的點,連接,,形成的中,是否存在點,使或等于?若存在,請直接寫出符合條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C的坐標分別為(4,0),(0,6),直線AD交BC于點D.tan∠OAD=2,拋物線過A,D兩點.
()求點D的坐標和拋物線M1的表達式.
()點P是拋物線M1對稱軸上一動點,當∠CPA=90°時,求所有滿足條件的點P的坐標.
()如圖,點E(0,4),連接AE,將拋物線M1的圖象向下平移m(m>0)個單位得到拋物線M2.
①設點D平移后的對應點為點D',當點D'恰好落在直線AE上時,求m的值.
②當時,若拋物線M2與直線AE有兩個交點,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解在校學生對校本課程的喜愛情況,隨機調(diào)查了九年級學生對A,B,C,D,E五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個統(tǒng)計圖.
請根據(jù)圖中所提供的信息,完成下列問題:
(1)本次被調(diào)查的學生的人數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為 ;
(4)若該中學有4000名學生,請估計該校喜愛C,D兩類校本課程的學生共有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】心理學家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學生的注意力隨教師講課的變化而變化,開始上課時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力指標數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時與第三十分鐘時相比較,何時學生的注意力更集中?
(2)一道數(shù)學競賽題,需要講16分鐘,為了效果較好,要求學生的注意力指標數(shù)最低達到36,那么經(jīng)過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB, CD.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)
(2)求(1)中所作圓的半徑
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com