【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點,連接AC、CB,過O作EO∥CB并延長EO到F,使EO=FO,連接AF并延長,AF與CB的延長線交于D.求證:AE2=FGFD.
科目:初中數(shù)學 來源: 題型:
【題目】某單位現(xiàn)要組織其市場和生產部的員工游覽該公園,門票價格如下:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
如果按部門作為團體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費為1245元;如果兩個部門合在一起作為一個團體,同一時間購票游覽公園,則需支付門票費為945元.那么該公司這兩個部的人數(shù)之差的絕對值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b<0;其中正確的個數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.
(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;
(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.
①求∠CAM的度數(shù);
②當FH=,DM=4時,求DH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當△ABC為等邊三角形時,AD與BC的數(shù)量關系為AD= BC;
②如圖3,當∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數(shù)量關系,并給予證明.
拓展應用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,弦AB垂直平分半徑OC,垂足為D.若點P是⊙O上異于點A,B的任意一點,則∠APB=( )
A.30°或60°B.60°或150°C.30°或150°D.60°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角線坐標系中,將△ABC繞點B順時針旋轉,使點A旋轉至y軸正半軸上的A′處,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線與x軸的兩個交點及其頂點構成等邊三角形,則稱該拋物線為“等邊拋物線”.
(1)判斷拋物線C1:y=x2﹣2x是否為“等邊拋物線”?如果是,求出它的對稱軸和頂點坐標;如果不是,說明理由.
(2)若拋物線C2:y=ax2+2x+c為“等邊拋物線”,求ac的值;
(3)對于“等邊拋物線”C3:y=x2+bx+c,當1<x<m時,二次函數(shù)C3的圖象落在一次函數(shù)y=x圖象的下方,求m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com