【題目】如圖,點,都在雙曲線()上,分別是軸,軸上的動點,當(dāng)四邊形PABQ的周長取最小值時,PQ所在直線的表達式為( )

A.B.C.D.

【答案】C

【解析】

先求出A、B的坐標(biāo),如下圖,分別作點A、B關(guān)于x軸、y軸的對稱點C、D,連接CDx軸、y軸的交點即為點P、Q,從而求出PQ所在直線解析式.

∵點,都在雙曲線

A(-3,1)B(-1,3)

如下圖,分別作點AB關(guān)于x軸、y軸的對稱點C、D,連接CDx軸、y軸交于點M、N

則點C(-3-1),D(1,3)

∵四邊形ABQP的周長=AB+BQ+PQ+PA

其中,AB是定值,BQ=DQ,AP=CPPQ=PQ

如上圖,當(dāng)點P、QM、N兩點時

CPPQ、QD三段直線共線,距離最小

∴上圖中點MN即為P、Q

則將C、D兩點代入,可求得PQ所在直線解析式為:

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,點C、D在線段AF上,ADCDCF,∠ABC=∠DEF90°,ABEF

1)若BC2,AB2,求BD的長;

2)求證:四邊形BCED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在第1中,;在邊上任取一點,延長,使,得到第2;在邊上任取一點,延長,使,得到第3按此做法繼續(xù)下去,則第個三角形中以為頂點的底角度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,將三角形進行平移,平移后點的對應(yīng)點分別是點,點,點,點,點.

1)若,求的值;

2)若點,其中. 直線軸于點,且三角形的面積為1,試探究的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點和點,與軸交于點.

(1)反比例函數(shù)的表達式 ;一次函數(shù)的表達式 .

(2)若在軸上有一點,其橫坐標(biāo)是1,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,菱形的頂點軸上,點在點的左側(cè),點軸的正半軸上.的坐標(biāo)為.動點從點出發(fā),以每秒1個單位長度的速度,按照的順序在菱形的邊上勻速運動一周,設(shè)運動時間為.

(1)①的坐標(biāo) .②求菱形的面積.

(2)當(dāng)時,問線段上是否存在點,使得最小,如果存在,求出 最小值;如果不存在,請說明理由.

(3)若點的距離是1,則點運動的時間等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABBD,CDBD,垂足分別為B、D,AD和BC相交于點E,EFBD,垂足為F,我們可以證明成立(不要求考生證明).

若將圖中的垂線改為斜交,如圖,ABCD,AD,BC相交于點E,過點E作EFAB交BD于點F,則:

1還成立嗎?如果成立,請給出證明;如果不成立,請說明理由;

(2)請找出SABD,SBED和SBDC間的關(guān)系式,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點A、B分別表示數(shù)1.

(1)求的取值范圍;

(2)請你判斷數(shù)軸上表示數(shù)的點應(yīng)落在____________,并說明理由.

A.點A的左邊 B.線段ABC.點B的右邊

查看答案和解析>>

同步練習(xí)冊答案