【題目】在一次綜合社會(huì)實(shí)踐活動(dòng)中,小東同學(xué)從A處出發(fā),要到A地北偏東60°方向的C處,他先沿正東方向走了4千米到達(dá)B處,再沿北偏東15°方向走,恰能到達(dá)目的地C,如圖所示,則A、C兩地相距__千米.(結(jié)果精確到0.1千米,參考數(shù)據(jù):≈1.414,≈1.732)
【答案】5.5
【解析】
先求出∠BAC,再根據(jù)三角形的內(nèi)角和定理求出∠C,然后解直角三角形即可得到結(jié)論.
解:∵B在A的正東方,C在A地的北偏東60°方向,
∴∠BAC=90°﹣60°=30°,
∵C在B地的北偏東15°方向,
∴∠ABC=90°+15°=105°,
∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣30°﹣105°=45°,
過(guò)B作BD⊥AC于D,
在Rt△ABD中,∠BAD=30°,AB=4km,
∴BD=AB=2km,AD=2km,
在Rt△BCD中,∠C=45°,
∴CD=BD=2km,
∴AC=AD+CD=(2+2)≈5.5km,
答:A、C兩地相距5.5千米,
故答案為:5.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變,近年來(lái),移動(dòng)支付已成為主要的支付方式之一,為了解某校學(xué)生上個(gè)月兩種移動(dòng)支付方式的使用情況,從全校名學(xué)生中隨機(jī)抽取了人,發(fā)現(xiàn)樣本中兩種支付方式都不使用的有人,樣本中僅使用種支付方式和僅使用種支付方式的學(xué)生的支付金額(元)的分布情況如下:
支付金額(元) 支付方式 | |||
僅使用 | 人 | 人 | 人 |
僅使用 | 人 | 人 | 人 |
下面有四個(gè)推斷:
①?gòu)臉颖局惺褂靡苿?dòng)支付的學(xué)生中隨機(jī)抽取一名學(xué)生,該生使用A支付方式的概率大于他使用B支付方式的概率;
②根據(jù)樣本數(shù)據(jù)估計(jì),全校1000名學(xué)生中.同時(shí)使用A、B兩種支付方式的大約有400人;
③樣本中僅使用A種支付方式的同學(xué),上個(gè)月的支付金額的中位數(shù)一定不超過(guò)1000元;
④樣本中僅使用B種支付方式的同學(xué),上個(gè)月的支付金額的平均數(shù)一定不低于1000元.其中合理的是( )
A.①③B.②④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,E、F是對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),且EF=2,P是正方形四邊上的任意一點(diǎn).若△PEF是等邊三角形,則符合條件的P點(diǎn)共有_____個(gè),此時(shí)AE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2mx+m2+m的頂點(diǎn)為A.
(1)當(dāng)m=1時(shí),直接寫(xiě)出拋物線的對(duì)稱軸;
(2)若點(diǎn)A在第一象限,且OA=,求拋物線的解析式;
(3)已知點(diǎn)B(m﹣,m+1),C(2,2).若拋物線與線段BC有公共點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=5,BC=4,E是BC邊上一點(diǎn),連接DE,將矩形ABCD沿DE折疊,頂點(diǎn)C恰好落在AB邊上點(diǎn)F處,延長(zhǎng)DE交AB的延長(zhǎng)線于點(diǎn)G.
(1)求線段BE的長(zhǎng);
(2)連接CG,求證:四邊形CDFG是菱形;
(3)如圖2,P,Q分別是線段DG,CG上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且∠CPQ=∠CDP,是否存在這樣的點(diǎn)P,使△CPQ是等腰三角形?若存在,請(qǐng)直接寫(xiě)出DP的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)O作BD的垂線與邊AD,BC分別交于點(diǎn)E,F,連接BE交AC于點(diǎn)K,連接DF.
(1)求證:四邊形EBFD是菱形;
(2)若BK=3EK,AE=4,求四邊形EBFD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動(dòng)信號(hào)發(fā)射塔,
筆山職中數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測(cè)得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測(cè)得該塔的塔頂的仰角為.求:
坡頂到地面的距離;
移動(dòng)信號(hào)發(fā)射塔的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角∠AOB如圖,
(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作弧DE,交射線OB于點(diǎn)F,連接CF;
(2)以點(diǎn)F為圓心,CF長(zhǎng)為半徑作弧,交弧DE于點(diǎn)G;
(3)連接FG,CG.作射線OG.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( 。
A.∠BOG=∠AOBB.若CG=OC,則∠AOB=30°
C.OF垂直平分CGD.CG=2FG
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與一次函數(shù)的圖象交于點(diǎn)與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.
(1)直接寫(xiě)出點(diǎn)的坐標(biāo);
(2)求點(diǎn)的坐標(biāo)(用含的式子表示);
(3)若兩點(diǎn)中只有一個(gè)點(diǎn)在線段上,直接寫(xiě)出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com