【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,ABC的三個頂點的位置如圖所示.現(xiàn)將ABC沿著點A到點D的方向平移,使點A變換為點D,點E、F分別是B、C的對應(yīng)點.

1)畫出ABCAB邊上的高CH;(提醒:別忘了標(biāo)注字母);

2)請畫出平移后的DEF;

3)平移后,線段AB掃過的部分所組成的封閉圖形的面積是___________.

【答案】1)見解析;(2)見解析;(39

【解析】

1)利用格點的性質(zhì),過點CCHAB,BA的延長線于點H.

2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點BC平移后的對應(yīng)點E、F的位置,然后順次連接即可;
3)根據(jù)平移的性質(zhì),對應(yīng)點的連線平行且相等,根據(jù)平行四邊形面積計算即可.

1)如圖所示:

2)如圖所示:

3)線段AB掃過的部分所組成的封閉圖形即平行四邊形

平行四邊形的面積=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△PQR在直角坐標(biāo)系中的位置如圖所示:

(1) 求出△PQR的面積;

(2) 畫出△P′Q′R′,使△P′Q′R′△PQR關(guān)于y軸對稱,寫出點P′Q′、R′的坐標(biāo);

(3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:過PPEAB,通過平行線性質(zhì)來求∠APC.

(1)按小明的思路,易求得∠APC的度數(shù)為_____度;

(2)問題遷移:如圖2,ABCD,點P在射線OM上運(yùn)動,記∠PAB=α,PCD=β,當(dāng)點PB、D兩點之間運(yùn)動時,問∠APCα、β之間有何數(shù)量關(guān)系?請說明理由;

(3)(2)的條件下,如果點PB、D兩點外側(cè)運(yùn)動時(點P與點O、B、D三點不重合),請直接寫出∠APCα、β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E是AC的中點,OE交CD于點F.

(1)若∠BCD=36°,BC=10,求BD的長;
(2)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(3)求證:2CE2=ABEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A,B分別是x軸、y軸上的動點,點C,D是某個函數(shù)圖象上的點,當(dāng)四邊形ABCD(A,B,C,D各點依次排列)為正方形時,我們稱這個正方形為此函數(shù)圖象的“伴侶正方形”.
例如:在圖1中,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個“伴侶正方形”.

(1)如圖1,若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有“伴侶正方形”的邊長;
(2)如圖2,若某函數(shù)是反比例函數(shù) (k>0),它的圖象的“伴侶正方形”為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
(3)如圖3,若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的“伴侶正方形”為ABCD,C,D中的一個點坐標(biāo)為(3,4),請你直接寫出該二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計圖補(bǔ)充完成;
(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:

如圖①,AD平分∠BAC,∠B+C180°,∠B90°.判斷DBDC的大小關(guān)系并證明.

探究:

如圖②,AD平分∠BAC,∠ABD+ACD180°,∠ABD90°,DBDC的大小關(guān)系變嗎?請說明理由.

應(yīng)用:

如圖③,四邊形ABDC中,∠B45°,∠C135°,DBDCa,則ABAC   .(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D、F在線段AB上,點E、G分別在線段BCAC上,CDEF,∠1=∠2.

(1)判斷DGBC的位置關(guān)系,并說明理由;

(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,ABCD有怎樣的位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示,則下列結(jié)論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時,卻早到1小時;③乙車出發(fā)后2.5小時追上甲車;④當(dāng)甲、乙兩車相距50千米時,t.其中正確的是________(填序號).

查看答案和解析>>

同步練習(xí)冊答案