【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在中,,點(diǎn)為的中點(diǎn),以為一邊作正方形,點(diǎn)恰好與點(diǎn)重合,則線段與的數(shù)量關(guān)系為______________;
(2)拓展探究
在(1)的條件下,如果正方形繞點(diǎn)旋轉(zhuǎn),連接,線段與的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形進(jìn)行說(shuō)明;
(3)問(wèn)題解決.
當(dāng)正方形旋轉(zhuǎn)到三點(diǎn)共線時(shí),直接寫出線段的長(zhǎng).
【答案】(1);(2)無(wú)變化,說(shuō)明見(jiàn)詳解;(3)或
【解析】
(1)先利用等腰直角三角形的性質(zhì)得出AB=AD,再得出AD=AF,即可得出結(jié)論;
(2)先利用等腰直角三角形和正方形的性質(zhì)得:,并證明夾角相等即可得出△ACF∽△BCE,進(jìn)而得出結(jié)論;
(3)分當(dāng)點(diǎn)E在線段BF上時(shí)和當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上時(shí)討論即可求得線段的長(zhǎng).
解:(1)在Rt△ABC中,AB=AC,
∵D是BC的中點(diǎn),
∴AD=BC=BD,AD⊥BC,
∴△ABD是等腰直角三角形,
∴AB=AD,
∵正方形CDEF,
∴DE=EF,
當(dāng)點(diǎn)E恰好與點(diǎn)A重合,
∴AB=AD=AF,即BE=AF,
故答案為:BE=AF;
(2)無(wú)變化;
如圖2,在中,
∴,∴
在正方形中,
在中,
∴
∵
∴
在和中
∴∽
∴
∴線段和的數(shù)量關(guān)系無(wú)變化.
(3) 或.
當(dāng)點(diǎn)E在線段BF上時(shí),
如圖2,
∵正方形,由(1)知AB=AD=AF,
∴CF=EF=CD=2,
在Rt△BCF中,CF=2,BC=4,
根據(jù)勾股定理得,BF=,
∴BE=BF-EF=-2,
由(2)得,,
∴AF=;
當(dāng)點(diǎn)E在線段BF的延長(zhǎng)線上時(shí),如圖,
同理可得,BF=,
BE=BF+EF=+2,
∴AF=,
綜上所述,當(dāng)正方形旋轉(zhuǎn)到三點(diǎn)共線時(shí),線段的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有5個(gè)分別寫有數(shù)字0,1,2,3,4的小球,它們除數(shù)字不同外其余全部相同.現(xiàn)從盒子里隨機(jī)摸出一個(gè)小球(不放回),設(shè)該小球上的數(shù)字為m,再?gòu)暮凶又忻鲆粋(gè)小球,設(shè)該小球上的數(shù)字為n,點(diǎn)P的坐標(biāo)為,則點(diǎn)P落在拋物線與x軸所圍成的區(qū)域內(nèi)(含邊界)的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.
(1)求證:四邊形AECF是矩形;
(2)若AB=6,求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為圓內(nèi)接四邊形,對(duì)角線AC、BD交于點(diǎn)E,延長(zhǎng)DA、CB交于點(diǎn)F.
(1)求證:△FBD∽△FAC;
(2)如果BD平分∠ADC,BD=5,BC=2,求DE的長(zhǎng);
(3)如果∠CAD=60°,DC=DE,求證:AE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線 與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
如圖1,在中,是的完美分割線,且, 則的度數(shù)是
如圖2,在中,為角平分線,,求證: 為的完美分割線.
如圖2,中,是的完美分割線,且是以為底邊的等腰三角形,求完美分割線的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D為BC的中點(diǎn),經(jīng)過(guò)AD兩點(diǎn)的圓分別與AB,AC交于點(diǎn)E、F,連接DE,DF.
(1)求證:DE=DF;
(2)求證:以線段BE+CF,BD,DC為邊圍成的三角形與△ABC相似,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最。咳绻嬖,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,分別沿長(zhǎng)方形紙片ABCD和正方形紙片EFGH的對(duì)角線AC,EG剪開,拼成如圖2所示的ALMN,若中間空白部分四邊形OPQR恰好是正方形,且ALMN的面積為50,則正方形EFGH的面積為( 。
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以斜邊上的中線為直徑作,分別與、交于點(diǎn)、.
(1)過(guò)點(diǎn)作,垂足為,求證:為的切線;
(2)連接,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com