【題目】已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象有一個交點的縱坐標是2.
(Ⅰ)當x=4時,求反比例函數(shù)y=的值;
(Ⅱ)當﹣2<x<﹣1時,求反比例函數(shù)y=的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC中,OA=4,AB=3,點D在邊BC上,且CD=3DB,點E是邊OA上一點,連接DE,將四邊形ABDE沿DE折疊,若點A的對稱點A′恰好落在邊OC上,則OE的長為( 。
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】聰明好學的亮亮看到一課外書上有個重要補充:
(角平分線定理)三角形一個內(nèi)角的平分線分對邊所成的兩條線段與這個角的兩鄰邊對應(yīng)成比例.于是他就和其他同學研究一番,寫出了已知、求證如下:
“已知:如圖1,△ABC中,AD平分∠BAC交BC于點D,求證:”
可是他們依然找不到證明的方法,于是,老師提示:過點B作BE∥AC交AD延長線于點E,于是得到△BDE∽△CDA,從而打開思路.
(Ⅰ)請你按老師的提示或你認為其他可行的方法幫亮亮完成證明.
(Ⅱ)利用角平分線定理解決如下問題:
如圖2,△ABC中,E是BC中點,AD是∠BAC的平分線,EF∥AD交AC于F,AB=7,AC=15,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上異于A、B的兩點,連接CD,過點C作CE⊥DB,交DB的延長線于點E.
(1)連接AC、AD,求證:∠DAC+∠ACE=180°.
(2)若∠ABD=2∠BDC,求證:CE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=20,DA⊥AB,E是⊙O上一點,連接DE并延長交AB的延長線于點F,DE=DA,BF=16.
(1)求證:DE是⊙O的切線.
(2)求AD的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與軸交于點,與軸的交點在和之間(不包括這兩點),對稱軸為直線.下列結(jié)論:
①;②;③;④;⑤.
其中正確結(jié)論有 __________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點A﹙-2,-5﹚,C﹙5,n﹚,交y軸于點B,交x軸于點D.
(1) 求反比例函數(shù)和一次函數(shù)的表達式;
(2) 連接OA,OC.求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長線交邊AB于點M,過點B作BN∥MP交DC于點N.
(1)求證:AD2=DPPC;
(2)請判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC,分別交PM,PB于點E,F(xiàn).若=,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式;
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com