【題目】如圖,已知二次函數(shù)的圖像與軸交于點(diǎn),與軸的交點(diǎn)在和之間(不包括這兩點(diǎn)),對(duì)稱軸為直線.下列結(jié)論:
①;②;③;④;⑤.
其中正確結(jié)論有 __________.
【答案】①③④
【解析】
由①由拋物線的開口方向、對(duì)稱軸以及與y軸的交點(diǎn),可得出a>0、b<0、c<0,進(jìn)而可得出abc>0,結(jié)論①正確;②由拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo),可得出拋物線與x軸的另一交點(diǎn)坐標(biāo),結(jié)合拋物線的開口可得出當(dāng)x=4時(shí),>0,結(jié)論②錯(cuò)誤;③由a>0、b<0、c<0,可得出4acb2<0<8a,結(jié)論③正確;④由當(dāng)x=1時(shí)y=ab+c=0,結(jié)合b=2a可得出3a=c,再根據(jù)2<c<1,即可求出,結(jié)論④正確;⑤由ab+c=0、a>0,可得出b+c<0,即b>c,結(jié)論⑤錯(cuò)誤.綜上即可得出結(jié)論.
①∵拋物線開口向上,對(duì)稱軸為直線x=1,與y軸的交點(diǎn)在(0,2)和(0,1)之間,
∴a>0,=1,2<c<1,
∴b<0,abc>0,結(jié)論①正確;
②∵拋物線與x軸交于點(diǎn)A(1,0),對(duì)稱軸為直線x=1,
∴拋物線與x軸的另一交點(diǎn)坐標(biāo)為(3,0),
∴當(dāng)x=4時(shí),>0,結(jié)論②錯(cuò)誤;
③∵a>0,b<0,c<0,
∴4ac<0,b2>0,
∴4acb2<0<8a,結(jié)論③正確;
④當(dāng)x=1時(shí),y=ab+c=0,
∴ab=c.
∵b=2a,
∴3a=c.
又∵2<c<1,
∴,結(jié)論④正確;
⑤∵當(dāng)x=1時(shí),y=ab+c=0,a>0,
∴b+c<0,
∴b>c,結(jié)論⑤錯(cuò)誤.
綜上所述:正確的結(jié)論有①③④.
故答案為:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與y=kx+4分別交x軸于點(diǎn)A、B,兩直線交于y軸上同一點(diǎn)C,點(diǎn)D的坐標(biāo)為(﹣,0),點(diǎn)E是AC的中點(diǎn),連接OE交CD于點(diǎn)F.
(1)求點(diǎn)F的坐標(biāo);
(2)若∠OCB=∠ACD,求k的值;
(3)在(2)的條件下,過點(diǎn)F作x軸的垂線1,點(diǎn)M是直線BC上的動(dòng)點(diǎn),點(diǎn)N是x軸上的動(dòng)點(diǎn),點(diǎn)P是直線l上的動(dòng)點(diǎn),使得以B,P,M、N為頂點(diǎn)的四邊形是菱形,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E,F,若BE=3,AF=5,則AC的長(zhǎng)為( )
A. B. C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載:“今有上禾三秉,益實(shí)六斗,當(dāng)下禾十秉.下禾五秉,益實(shí)一斗,當(dāng)上禾二秉.問上、下禾實(shí)一秉各幾何?”其大意是:今有上等稻子三捆,若打出來的谷子再加六斗,則相當(dāng)于十捆下等稻子打出來的谷子.有下等稻子五捆,若打出來的谷子再加一斗,則相當(dāng)于兩捆上等稻子打?qū)鐏淼墓茸?/span>.問上等、下等稻子每捆能打多少斗谷子?設(shè)上等稻子每捆能打x斗谷子,下等稻子每捆能打y斗谷子,根據(jù)題意,可列方程組為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象有一個(gè)交點(diǎn)的縱坐標(biāo)是2.
(Ⅰ)當(dāng)x=4時(shí),求反比例函數(shù)y=的值;
(Ⅱ)當(dāng)﹣2<x<﹣1時(shí),求反比例函數(shù)y=的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸相交于、兩點(diǎn),與軸相交于點(diǎn),對(duì)稱軸為,直線與拋物線相交于、兩點(diǎn).
(1)求此拋物線的解析式;
(2)為拋物線上一動(dòng)點(diǎn),且位于的下方,求出面積的最大值及此時(shí)點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)在軸上,且滿足,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖三角形ABC是圓O的內(nèi)接正三角形,弦EF經(jīng)過BC邊的中點(diǎn)D,且EF平行AB,若AB等于6,則EF等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,過O點(diǎn)作OP⊥AB,交弦AC于點(diǎn)D,交⊙O于點(diǎn)E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABO中,∠B=90 ,OB=3,OA=5,以AO上一點(diǎn)P為圓心,PO長(zhǎng)為半徑的圓恰好與AB相切于點(diǎn)C,則下列結(jié)論正確的是( 。
A.⊙P 的半徑為
B.經(jīng)過A,O,B三點(diǎn)的拋物線的函數(shù)表達(dá)式是
C.點(diǎn)(3,2)在經(jīng)過A,O,B三點(diǎn)的拋物線上
D.經(jīng)過A,O,C三點(diǎn)的拋物線的函數(shù)表達(dá)式是
查看答案和解析>>