已知x為實(shí)數(shù),且﹣(x2+x)=2,則x2+x的值為(  )

A.0       B.1       C.2       D.x2


B【考點(diǎn)】換元法解分式方程.

【分析】根據(jù)換元法,可得u=x2+x,根據(jù)解分式方程,可得答案.

【解答】解:設(shè)u=x2+x,得

﹣μ=2.

3﹣u2=2u,

解得u1=﹣3,u2=1.

當(dāng)x2+x=﹣3時(shí),即x2+x+3=0,△=12﹣4×3=﹣11<0,故不符合題意.

故x2+x的值為1.

故選:B.

【點(diǎn)評(píng)】本題考查了用換元法解方程,解題關(guān)鍵是能準(zhǔn)確的找出可用替換的代數(shù)式x2+x,再用字母u代替解方程.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


初三年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:

(1)在這次評(píng)價(jià)中,一共抽查了 560 名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 54 度;

(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

(4)如果全市有6000名初三學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初三學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,將斜邊長(zhǎng)為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點(diǎn).現(xiàn)將此三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°后點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)是( 。

A.(,1)     B.(1,﹣)  C.(2,﹣2)       D.(2,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


先化簡(jiǎn),再求值:÷(2﹣),其中x=+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知ab<0,,則= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列四個(gè)命題中,假命題是( 。

A.兩角對(duì)應(yīng)相等,兩個(gè)三角形相似

B.三邊對(duì)應(yīng)成比例,兩個(gè)三角形相似

C.兩邊對(duì)應(yīng)成比例且其中一邊的對(duì)角相等,兩個(gè)三角形相似

D.兩邊對(duì)應(yīng)成比例且夾角相等,兩個(gè)三角形相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,且AC=80,BD=60.動(dòng)點(diǎn)M、N分別以每秒1個(gè)單位的速度從點(diǎn)A、D同時(shí)出發(fā),分別沿A→O→D和D→A運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),M、N同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求菱形ABCD的周長(zhǎng);

(2)記△DMN的面積為S,求S關(guān)于t的解析式,并求S的最大值;

(3)當(dāng)t=30秒時(shí),在線段OD的垂直平分線上是否存在點(diǎn)P,使得∠DPO=∠DON?若存在,這樣的點(diǎn)P有幾個(gè)?并求出點(diǎn)P到線段OD的距離;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知實(shí)數(shù)x,y,m滿足,且y為負(fù)數(shù),則m的取值范圍是( 。

A.m>6       B.m<6 C.m>﹣6    D.m<﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知△ABC是等腰直角三角形,CD是斜邊AB的中線,△ADC繞點(diǎn)D旋轉(zhuǎn)一定角度得到△A'DC',A'D交AC于點(diǎn)E,DC'交BC于點(diǎn)F,連接EF,若,則=  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案