初三年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了 560 名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 54 度;
(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有6000名初三學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初三學(xué)生約有多少人?
【考點(diǎn)】頻數(shù)(率)分布直方圖;用樣本估計(jì)總體;扇形統(tǒng)計(jì)圖.
【分析】(1)根據(jù)專注聽講的人數(shù)是224人,所占的比例是40%,即可求得抽查的總?cè)藬?shù);
(2)利用360乘以對(duì)應(yīng)的百分比即可求解;
(3)利用總?cè)藬?shù)減去其他各組的人數(shù),即可求得講解題目的人數(shù),從而作出頻數(shù)分布直方圖;
(4)利用6000乘以對(duì)應(yīng)的比例即可.
【解答】解:(1)調(diào)查的總?cè)藬?shù)是:224÷40%=560(人),故答案是:560;
(2)“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)是:360×=54°,故答案是:54;
(3)“講解題目”的人數(shù)是:560﹣84﹣168﹣224=84(人).
;
(4)在試卷評(píng)講課中,“獨(dú)立思考”的初三學(xué)生約有:6000×=1800(人).
【點(diǎn)評(píng)】本題考查扇形統(tǒng)計(jì)圖及相關(guān)計(jì)算.在扇形統(tǒng)計(jì)圖中,每部分占總部分的百分比等于該部分所對(duì)應(yīng)的扇形圓心角的度數(shù)與360°比.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求陰影部分的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
今年3月5日,李克強(qiáng)總理在《政府工作報(bào)告》中指出,到2020年,我國(guó)經(jīng)濟(jì)總量將超過90萬億元,90萬億元用科學(xué)記數(shù)法表示為( 。
A.9×1011元 B.90×1010元 C.9×1012元 D.9×1013元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
等腰三角形邊長(zhǎng)分別為a,b,2,且a,b是關(guān)于x的一元二次方程x2﹣6x+n﹣1=0的兩根,則n的值為
( 。
A.9 B.10 C.9或10 D.8或10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=x2+bx+c與x軸交與A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交與點(diǎn)C(0,﹣3),對(duì)稱軸是直線x=1,直線BC與拋物線的對(duì)稱軸交與點(diǎn)D.
(1)求拋物線的函數(shù)關(guān)系式.
(2)若平行于x軸的直線與拋物線交于點(diǎn)M、N(M點(diǎn)在N點(diǎn)左側(cè)),且MN為直徑的圓與x軸相切,求該圓的半徑.
(3)若點(diǎn)M在第三象限,記MN與y軸的交點(diǎn)為點(diǎn)F,點(diǎn)C關(guān)于點(diǎn)F的對(duì)稱點(diǎn)為點(diǎn)E.
①當(dāng)線段MN=AB時(shí),求tan∠CED的值;
②當(dāng)以C、D、E為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某體育用品專賣店銷售7個(gè)籃球和9個(gè)排球的總利潤(rùn)為355元,銷售10個(gè)籃球和20個(gè)排球的總利潤(rùn)為650元.
(1)求每個(gè)籃球和每個(gè)排球的銷售利潤(rùn);
(2)已知每個(gè)籃球的進(jìn)價(jià)為200元,每個(gè)排球的進(jìn)價(jià)為160元,若該專賣店計(jì)劃用不超過17400元購進(jìn)籃球和排球共100個(gè),且要求籃球數(shù)量不少于排球數(shù)量的一半,請(qǐng)你為專賣店設(shè)計(jì)符合要求的進(jìn)貨方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com