【題目】某商場在11月中旬對甲、乙、丙三種型號的電視機進行促銷.其中,甲型號電視機直接按成本價1280元的基礎(chǔ)上獲利定價;乙型號電視機在原銷售價2199元的基礎(chǔ)上先讓利199元,再按八五折優(yōu)惠;丙型號電視機直接在原銷售價2399元上減499元;活動結(jié)束后,三種型號電視機總銷售額為20600元,若在此次促銷活動中,甲、乙、丙三種型號的電視機至少賣出其中兩種型號,則三種型號的電視機共______有種銷售方案.

【答案】

【解析】

設(shè)甲種型號的電視機賣出x臺,乙種型號的電視機賣出y臺,丙種型號的電視機賣出z臺,根據(jù)“三種型號電視機總銷售額為20600元”列方程,整理后,分類討論即可得出結(jié)論.

設(shè)甲種型號的電視機賣出x臺,乙種型號的電視機賣出y臺,丙種型號的電視機賣出z臺,根據(jù)題意得:

1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600

整理得:16x+17y+19z=206

16(x+y+z)+y+3z=16×12+14

x、yz為非負整數(shù),且xy、z最多一個為0

0x12,0y120z10,

14y+3z42

設(shè)x+y+z=12-k,y+3z=14+16k,其中k為非負整數(shù).

1414+16k42

0k2

k為整數(shù),

k=01

1)當k=0時,x+y+z=12,y+3z=14

0z4

①當z=0時,y=1412,舍去;

②當z=1時,y=14-3z=11,x=12-y-z=12-11-1=0,符合題意;

③當z=2時,y=14-3z=8x=12-y-z=12-8-2=2,符合題意;

④當z=3時,y=14-3z=5x=12-y-z=12-5-3=4,符合題意;

⑤當z=4時,y=14-3z=2x=12-y-z=12-2-4=6,符合題意.

2)當k=1時,x+y+z=11,y+3z=30

y=30-3z

030-3z12,

解得:6z10

z=6時,y=30-3z=12x=11-y-z=11-12-6=-70,舍去;

z=7時,y=30-3z=9x=11-y-z=11-9-7=-50,舍去;

z=8時,y=30-3z=6x=11-y-z=11-6-8=-30,舍去;

z=9時,y=30-3z=3x=11-y-z=11-3-9=-10,舍去;

z=10時,y=30-3z=0x=11-y-z=11-10-0=1,符合題意.

綜上所述:共有,五種方案.

故答案為:五.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一個紙盒內(nèi)有張完全相同的卡片,分別標號為,.隨機抽取一張卡片后不放回,再隨機抽取另一張卡片.

(1)用列舉法求兩次抽出卡片的標號等于的概率;

(2)小明同學連續(xù)做了次試驗,這次試驗沒有一次出現(xiàn)兩次抽出卡片的標號和等于.他說,次試驗我一定能夠兩次抽出卡片的標號和等于’”.你認為他說得對嗎,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.

(1)學生小紅計劃選修兩門課程,請寫出所有可能的選法;

(2)若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點分別在菱形的邊上滑動(點不與重合),且

1)如圖1,若,求證:;

2)如圖2,若不垂直,(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,說明理由;

3)如圖3,若,請直接寫出四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點ECD的中點,將BCE沿BE折疊后得到BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線過點且與軸交于點,點關(guān)于軸的對稱點為點.過點且與直線平行的直線交于點,交軸于點,連接.

1)求直線的解析式;

2)求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線與直線交于點,已知點的橫坐標為-5,直線軸交于點,與軸交于點,直線軸交于點.

1)求直線的解析式;

2)將直線向上平移6個單位得到直線,直線軸交于點,過點軸的垂線,若點為垂線上的一個動點,點軸上的一個動點,當的值最小時,求此時點的坐標及的最小值;

3)已知點分別是直線、上的兩個動點,連接、,是否存在點,使得是以點為直角頂點的等腰直角三角形,若存在,求點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y=的圖象經(jīng)過點P(4,3)和點B(m,n)(其中0<m<4),作BAx軸于點A,連接PA,PB,OB,已知SAOB=SPAB

(1)求k的值和點B的坐標.

(2)求直線BP的解析式.

(3)直接寫出在第一象限內(nèi),使反比例函數(shù)大于一次函數(shù)的x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的三個頂點分別為,

向上平移個單位后得到,請畫出;

已知點與點關(guān)于直線成軸對稱,請畫出直線關(guān)于直線對稱的.

軸上存在一點,滿足點到點與點距離之和最小,請直接寫出點的坐標.

查看答案和解析>>

同步練習冊答案