【題目】如圖,正比例函數(shù) 的圖象與反比例函數(shù) 的圖象交于A、B兩點,點C在x軸負(fù)半軸上,AC=AO,△ACO的面積為12.

(1)求k的值;
(2)根據(jù)圖象,當(dāng) 時,寫出自變量 的取值范圍.

【答案】
(1)

解:如圖,過點A作AD⊥OC于點D.

又∵AC=AO.

∴CD=DO.

∴S△ADO=S△ACO=6.

∴k=-12.


(2)

解:由圖像可知:χ<-2或0<χ<2.


【解析】(1)如圖,過點A作AD⊥OC于點D,根據(jù)等腰三角形的性質(zhì)可以得出S△ADO=S△ACO=6;從而求出k的值.
(2)從圖像可以得出答案.
【考點精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的性質(zhì)的相關(guān)知識,掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大,以及對比例系數(shù)k的幾何意義的理解,了解幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,AC=6,BC=8,ADBAC的平分線.若P,Q分別是ADAC上的動點,則PC+PQ的最小值是(

A. B. 4 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個粒子在第一象限內(nèi)及x軸、y軸上運動,在第一分鐘,它從原點運動到點(1,0),第二分鐘,它從點(1,0)運動到點(1,1),而后它接著按圖中箭頭所示在與x軸,y軸平行的方向上來回運動,且每分鐘移動1個單位長度,那么在第2019分鐘時,這個粒子所在位置的坐標(biāo)是( )

A. (44,5) B. (5,44) C. (44,6) D. (6,44)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=-x+m分別交于x軸、y軸于A,B兩點,已知點C(2,0).

(1)當(dāng)直線AB經(jīng)過點C時,點O到直線AB的距離是
(2)設(shè)點P為線段OB的中點,連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題6分)如圖,在平面直角坐標(biāo)系中,△ABC各頂點的坐標(biāo)分別為A(2,2),B(4,1),C(4,4).

(1)作出 ABC關(guān)于原點O成中心對稱的 A1B1C1.
(2)作出點A關(guān)于x軸的對稱點A'.若把點A'向右平移a個單位長度后落在 A1B1C1的內(nèi)部(不包括頂點和邊界),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

,,……

=

= =

解答下列問題:

(1)在和式中,第6項為______,第n項是__________.

(2)上述求和的想法是通過逆用________法則,將和式中的各分?jǐn)?shù)轉(zhuǎn)化為兩個數(shù)之差,使得除首末兩項外的中間各項可以_______,從而達到求和的目的.

(3)受此啟發(fā),請你解下面的方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)把△ABC向下平移2個單位長度得到△A1B1C1,請畫出△A1B1C1

(2)請畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2,并寫出A2的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡.

(1)( x- y)( x+ y) ( x2+ y2) ( x4+ y4)·…·(x16+ y16)

(2)(22+1)(24+1)(28+1)(216+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某輪船由西向東航行,在 A 處測得小島 P 的方位是北偏東 75°,又繼續(xù)航行 8 海里后,在 B 處測得小島 P 的方位是北偏東 60°,則此時ABP 的面積為______平方海里.

查看答案和解析>>

同步練習(xí)冊答案