【題目】定義:若拋物線 m≠0)與拋物線 a≠0)的開口大小相同,方向相反,且拋物線經(jīng)過的頂點(diǎn),我們稱拋物線的“友好拋物線”.

(1)若的表達(dá)式為,求的“友好拋物線”的表達(dá)式;

(2)平面上有點(diǎn)P (1,0),Q (3,0),拋物線 的“友好拋物線”,且拋物線的頂點(diǎn)在第一象限,縱坐標(biāo)為2,當(dāng)拋物線與線段PQ沒有公共點(diǎn)時(shí),求a的取值范圍.

【答案】(1) 的“友好拋物線”為: ; 2.

【解析】(1)依題意,可設(shè)的“友好拋物線”的解析式為: ,

,

的頂點(diǎn)為(1,-1),

過點(diǎn)(1,-1),∴,即b=0,

的“友好拋物線”為: ;

(2)依題意,得 m =-a,

的頂點(diǎn)為

,即,

當(dāng)經(jīng)過點(diǎn)P(1,0)時(shí),

,a=8,

當(dāng)經(jīng)過點(diǎn)Q(3,0)時(shí),

,

∴拋物線與線段PQ沒有公共點(diǎn)時(shí), .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師對(duì)試卷講評(píng)課中九年級(jí)學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,每位學(xué)生最終評(píng)價(jià)結(jié)果為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng)中的一項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:

(1)在這次評(píng)價(jià)中,一共抽查了名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在扇形的圓心角度數(shù)為度;

(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

(4)如果全市九年級(jí)學(xué)生有8000名,那么在試卷評(píng)講課中,“獨(dú)立思考”的九年級(jí)學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步建設(shè)秀美、宜居的生態(tài)環(huán)境,某村欲購(gòu)買甲、乙、丙三種樹美化村莊,已知甲、乙丙三種樹的價(jià)格之比為2:2:3,甲種樹每棵200元,現(xiàn)計(jì)劃用210000元資金,購(gòu)買這三種樹共1000棵.

(1)求乙、丙兩種樹每棵各多少元?

(2)若購(gòu)買甲種樹的棵樹是乙種樹的2倍,恰好用完計(jì)劃資金,求這三種樹各能購(gòu)買多少棵?

(3)若又增加了10120元的購(gòu)樹款,在購(gòu)買總棵樹不變的前提下,求丙種樹最多可以購(gòu)買多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果將(a+bnn為非負(fù)整數(shù))的每一項(xiàng)按字母a的次數(shù)由大到小排列,可以得到下面的等式(1),然后將每個(gè)式子的各項(xiàng)系數(shù)排列成(2):(a+b1a+b;(a+b2a2+2ab+b2;(a+b3a3+3a2b+3ab2+b3;(a+b4a4+4a3b+6a2b2+4ab3+b4;根據(jù)規(guī)律可得:(a+b5_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn) = 銷售收入-進(jìn)貨成本)

1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大成蔬菜公司以千克的成本價(jià)購(gòu)進(jìn)番茄,公司想知道番茄的損壞率,從所有隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如表:

番茄總質(zhì)量

損壞番茄質(zhì)量

番茄損壞的頻率

估計(jì)這批番茄損壞的概率為______(精確到),據(jù)此,若公司希望這批番茄能獲得利潤(rùn)元,則銷售時(shí)(去掉損壞的番茄)售價(jià)應(yīng)至少定為______/千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201631,某園林公司派出一批工人去完成種植2200棵景觀樹木的任務(wù),這批工人31日到5日種植的數(shù)量(單位棵)如圖所示

1)這批工人前兩天平均每天種植多少棵景觀樹木?

2)因業(yè)務(wù)需要,310日必須完成種植任務(wù)你認(rèn)為該園林公司是否需要增派工人?請(qǐng)運(yùn)用統(tǒng)計(jì)知識(shí)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空:如圖,已知DGBCBCAC,EFAB,∠1=∠2,試判斷CDAB的位置關(guān)系:

解:CDAB

DGBC,BCAC(已知)

∴∠DGB=∠_____=90°(垂直定義)

DGAC,(____________________)

∴∠2=∠_________.(兩直線平行,內(nèi)錯(cuò)角相等)

∵∠1=∠2(已知)

∴∠1=∠________(等量代換)

EF∥______(同位角相等,兩直線平行)

∴∠AEF=∠ADC,(________________)

EFAB,

∴∠AEF90°

∴∠ADC90°

即:CDAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(3,2),點(diǎn)B的坐標(biāo)為(3,0).作如下操作:

1以點(diǎn)A為旋轉(zhuǎn)中心,將ABO順時(shí)針方向旋轉(zhuǎn)90°,得到AB1O1

2以點(diǎn)O為位似中心,將ABO放大,得到A2B2O,使位似比為12,且點(diǎn)A2在第三象限.

①在圖中畫出AB1O1A2B2O

②請(qǐng)直接寫出點(diǎn)A2的坐標(biāo):  

③如果ABO內(nèi)部一點(diǎn)M的坐標(biāo)為(m,n),寫出點(diǎn)MA2B2O內(nèi)的對(duì)應(yīng)點(diǎn)N的坐標(biāo):  

查看答案和解析>>

同步練習(xí)冊(cè)答案