【題目】如圖,點A的坐標為(3,2),點B的坐標為(3,0).作如下操作:

1以點A為旋轉(zhuǎn)中心,將ABO順時針方向旋轉(zhuǎn)90°,得到AB1O1

2以點O為位似中心,將ABO放大,得到A2B2O,使位似比為12,且點A2在第三象限.

①在圖中畫出AB1O1A2B2O;

②請直接寫出點A2的坐標:  

③如果ABO內(nèi)部一點M的坐標為(mn),寫出點MA2B2O內(nèi)的對應(yīng)點N的坐標:  

【答案】(1)作圖見解析;(2A2﹣6,﹣4).(3)(﹣2m﹣2n).

【解析】試題分析:①根據(jù)旋轉(zhuǎn)變換的條件以及位似變換的條件作出圖形即可.

根據(jù)圖象即可寫出點A2坐標.

根據(jù)位似變換,點A的變化規(guī)律,得出位似變換的點的變化規(guī)律,即可解決問題.

試題解析:解:①△AB1O1和△A2B2O,如圖所示:

由圖象可知,A2﹣6,﹣4).故答案為:(﹣6,﹣4).

③△ABO內(nèi)部一點M的坐標為(mn),點M在△A2B2O內(nèi)的對應(yīng)點N的坐標為(﹣2m,﹣2n).故答案為:(﹣2m,﹣2n).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:若拋物線 m≠0)與拋物線 a≠0)的開口大小相同,方向相反,且拋物線經(jīng)過的頂點,我們稱拋物線的“友好拋物線”.

(1)若的表達式為,求的“友好拋物線”的表達式;

(2)平面上有點P (1,0),Q (3,0),拋物線 的“友好拋物線”,且拋物線的頂點在第一象限,縱坐標為2,當拋物線與線段PQ沒有公共點時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:(有指定方法必須用指定方法)

1(配方法); 2(公式法)

3 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,∠BAC=120°,ADBC邊上的高,點P從點B以每秒個單位長度的速度向終點C運動,同時點Q從點C以每秒1個單位長度的速度向終點A運動,其中一個點到達終點時,兩點同時停止.

(1)BC的長;

(2)設(shè)△PDQ的面積為S,點P的運動時間為t秒,求St的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)在動點P、Q的運動過程中,是否存在PD=PQ,若存在,求出△PDQ的周長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.

觀察圖象可知:

①當x=﹣3或1時,y1=y2;

②當﹣3<x<0或x>1時,y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.

有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.

某同學根據(jù)學習以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補充完整:

(1)將不等式按條件進行轉(zhuǎn)化:

當x=0時,原不等式不成立;

當x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>;

當x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<;

(2)構(gòu)造函數(shù),畫出圖象

設(shè)y3=x2+4x﹣1,y4=,在同一坐標系中分別畫出這兩個函數(shù)的圖象.

雙曲線y4=如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)

(3)確定兩個函數(shù)圖象公共點的橫坐標

觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為   

(4)借助圖象,寫出解集

結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣6xm=0有兩個實數(shù)根

1)求m的取值范圍;

2)如果m取符合條件的最小整數(shù),且一元二次方程x2﹣6xm=0x2+nx+1=0有一個相同的根求常數(shù)n的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蓮城讀書月活動結(jié)束后,對八年級(三)班45人所閱讀書籍數(shù)量情況的統(tǒng)計結(jié)果如下表所示:

閱讀數(shù)量

1本

2本

3本

3本以上

人數(shù)(人)

10

18

13

4

根據(jù)統(tǒng)計結(jié)果,閱讀2本書籍的人數(shù)最多,這個數(shù)據(jù)2是(

A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 (1)如圖1,已知ABCD,ABC=60°,可得BCD=_______°;

如圖2,在的條件下,如果CM平分BCD,則BCM=_________°

如圖3,在、的條件下,如果CNCM,則BCN=___________°

(2)、嘗試解決下面問題:已知如圖4,ABCDB=40°,CNBCE的平分線, CNCM,求BCM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AC=BC,AB=4cm,AD平分∠BACBC于點D,DEAB于點E,則以下結(jié)論:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④BDE周長是4cm.其中正確的有( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習冊答案