如圖,若銳角△ABC內(nèi)接于⊙O,點D在⊙O外(與點C在AB同側(cè)),則下列三個結(jié)論:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正確的結(jié)論為( 。

A.①② B.②③  C.①②③     D.①③


D【考點】銳角三角函數(shù)的增減性;圓周角定理.

【分析】連接BE,根據(jù)圓周角定理,可得∠C=∠AEB,因為∠AEB=∠D+∠DBE,所以∠AEB>∠D,所以∠C>∠D,根據(jù)銳角三角形函數(shù)的增減性,即可判斷.

【解答】解:如圖,連接BE,

根據(jù)圓周角定理,可得∠C=∠AEB,

∵∠AEB=∠D+∠DBE,

∴∠AEB>∠D,

∴∠C>∠D,

根據(jù)銳角三角形函數(shù)的增減性,可得,

sin∠C>sin∠D,故①正確;

cos∠C<cos∠D,故②錯誤;

tan∠C>tan∠D,故③正確;

故選:D.

【點評】本題考查了銳角三角形函數(shù)的增減性,解決本題的關(guān)鍵是比較出∠C>∠D.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


.?dāng)?shù)學(xué)活動課上,老師提出這樣一個問題:如果AB=BC,∠ABC=60°,∠APC=30°,連接PB,那么PA、PB、PC之間會有怎樣的等量關(guān)系呢?經(jīng)過思考后,部分同學(xué)進(jìn)行了如下的交流:

小蕾:我將圖形進(jìn)行了特殊化,讓點P在BA延長線上(如圖1),得到了一個猜想:PA2+PC2=PB2

小東:我假設(shè)點P在∠ABC的內(nèi)部,根據(jù)題目條件,這個圖形具有“共端點等線段”的特點,可以利用旋轉(zhuǎn)解決問題,旋轉(zhuǎn)△PAB后得到△P′CB,并且可推出△PBP′,△PCP′分別是等邊三角形、直角三角形,就能得到猜想和證明方法.

這時老師對同學(xué)們說,請大家完成以下問題:

(1)如圖2,點P在∠ABC的內(nèi)部,

①PA=4,PC=,PB=      

②用等式表示PA、PB、PC之間的數(shù)量關(guān)系,并證明.

(2)對于點P的其他位置,是否始終具有②中的結(jié)論?若是,請證明;若不是,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


分解因式.a(chǎn)+2ab+ab2=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,某校數(shù)學(xué)興趣小組為測得大廈AB的高度,在大廈前的平地上選擇一點C,測得大廈頂端A的仰角為30°,再向大廈方向前進(jìn)80米,到達(dá)點D處(C、D、B三點在同一直線上),又測得大廈頂端A的仰角為45°,請你計算該大廈的高度.(精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


PM2.5是指大氣中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式組的解集是( 。

A.﹣1<x<2       B.1<x≤2     C.﹣1<x≤2 D.﹣1<x≤3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,已知在四邊形ABCD中,AE、CF分別是∠DAB及∠DCB的平分線,

∠B=∠D=90°,求證:AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請按下列要求畫圖:

(1)將△ABC先向右平移4個單位長度、再向下平移1個單位長度,得到△A1B1C1,畫出△A1B1C1

(2)△A2B2C2與△ABC關(guān)于原點O成中心對稱,畫出△A2B2C2

查看答案和解析>>

同步練習(xí)冊答案