【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2 ,△ADC與△ABC關(guān)于AC對(duì)
稱,點(diǎn)E、F分別是邊DC、BC上的任意一點(diǎn),且DE=CF,BE、DF相交于點(diǎn)P,則CP的最小值為( )
A. 1 B. C. D. 2
【答案】D
【解析】分析:連接BD,證明△EDB≌△FCD,可得∠BPD=120°,由于BD的長(zhǎng)確定,則點(diǎn)P在以A為圓心,AD為半徑的弧BD上,當(dāng)點(diǎn)A,P,C在一條直線上時(shí),CP有最小值.
詳解:連接AD,因?yàn)?/span>∠ACB=30°,所以∠BCD=60°,
因?yàn)?/span>CB=CD,所以△CBD是等邊三角形,
所以BD=DC.
因?yàn)?/span>DE=CF,∠EDB=∠FCD=60°,
所以△EDB≌△FCD,所以∠EBD=∠FDC,
因?yàn)?/span>∠FDC+∠BDF=60°,
所以∠EBD+∠BDF=60°,所以∠BPD=120°,
所以點(diǎn)P在以A為圓心,AD為半徑的弧BD上,
直角△ABC中,∠ACB=30°,BC=2,所以AB=2,AC=4,
所以AP=2.
當(dāng)點(diǎn)A,P,C在一條直線上時(shí),CP有最小值,
CP的最小值是AC-AP=4-2=2.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,過(guò)點(diǎn)O作.
(1)若,求的度數(shù);
(2)已知射線平分,射線平分.
①若,求的度數(shù);
②若,則的度數(shù)為 (直接填寫(xiě)用含的式子表示的結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線AB上一點(diǎn),OD是∠BOC的平分線.
(1)寫(xiě)出圖中互補(bǔ)的角;
(2)若∠AOC=53°18′,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(a≠0)經(jīng)過(guò)A(-1,0),B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P在拋物線的對(duì)稱軸上,當(dāng)△ACP的周長(zhǎng)最小時(shí),求出點(diǎn)P的坐標(biāo);
(3) 點(diǎn)N在拋物線上,點(diǎn)M在拋物線的對(duì)稱軸上,是否存在以點(diǎn)N為直角頂點(diǎn)的Rt△DNM與Rt△BOC相似,若存在,請(qǐng)求出所有符合條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形ABCD與正方形BEFM,且A、B、E在一直線上,已知AB=a,BC=b,BE=c,且a>b>c>0.設(shè)△ADE的面積為S1.
(1)用含a、b、c的代數(shù)式表示S1;
(2)正方形BEFM繞B順時(shí)針旋轉(zhuǎn)180度得到正方形BEFM,連接DM,用含a、b、c的代數(shù)式表示△DCM的面積為S2;
(3)請(qǐng)比較S1與S2的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假期間,小剛一家乘車(chē)去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車(chē)行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.
(1)從小剛家到該景區(qū)乘車(chē)一共用了多少時(shí)間?
(2)求線段AB對(duì)應(yīng)的函數(shù)解析式;
(3)小剛一家出發(fā)2.5小時(shí)時(shí)離目的地多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F在BD上,OE=OF.
(1)求證:AE=CF.
(2)若AB=2,∠AOD=120°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線T1:y=-x2-2x+3,T2:y=x2-2x+5,其中拋物線T1與x 軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).P點(diǎn)是x軸上一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)并且垂直于x軸的直線與拋物線T1和T2分別相交于N、M兩點(diǎn).設(shè)P點(diǎn)的橫坐標(biāo)為t.
(1)用含t的代數(shù)式表示線段MN的長(zhǎng);當(dāng)t為何值時(shí),線段MN有最小值,并求出此最小值;
(2)隨著P點(diǎn)運(yùn)動(dòng),P、M、N三點(diǎn)的位置也發(fā)生變化.問(wèn)當(dāng)t何值時(shí),其中一點(diǎn)是另外兩點(diǎn)連接線段的中點(diǎn)?
(3)將拋物線T1平移, A點(diǎn)的對(duì)應(yīng)點(diǎn)為A'(m-3,n),其中≤m≤,且平移后的拋物線仍經(jīng)過(guò)C點(diǎn),求平移后拋物線頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書(shū)畫(huà)作品,學(xué)校從全校30個(gè)班中隨機(jī)抽取了4個(gè)班 (用A,B,C,D表示),對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:
(1)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整,并估計(jì)全校共征集多少件作品?
(2)如果全校征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹(shù)狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com