【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象如圖所示.

(1)從小剛家到該景區(qū)乘車一共用了多少時間?

(2)求線段AB對應(yīng)的函數(shù)解析式;

(3)小剛一家出發(fā)2.5小時時離目的地多遠?

【答案】14h;(2y=120x﹣401≤x≤3);(3)小剛一家出發(fā)2.5小時時離目的地120km遠.

【解析】試題分析:(1)觀察圖形即可得出結(jié)論;(2)設(shè)AB段圖象的函數(shù)表達式為y=kx+b,將A、B兩點的坐標代入,運用待定系數(shù)法即可求解;(3)先將x=2.5代入AB段圖象的函數(shù)表達式,求出對應(yīng)的y值,進一步即可求解.

試題解析:(1)從小剛家到該景區(qū)乘車一共用了4h時間;

2)設(shè)AB段圖象的函數(shù)表達式為y=kx+b

∵A180),B3,320)在AB上,

,

解得

∴y=120x﹣401≤x≤3);

3)當(dāng)x=2.5時,y=120×2.5﹣40=260

380﹣260=120km).

故小剛一家出發(fā)2.5小時時離目的地120km遠.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標系中兩定點A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過點A,B,頂點為C,點P(m,n)(n<0)為拋物線上一點.

(1)求拋物線的解析式和頂點C的坐標;

(2)當(dāng)∠APB為鈍角時,求m的取值范圍;

(3)若m>,當(dāng)∠APB為直角時,將該拋物線向左或向右平移t(0<t<個單位,點C、P平移后對應(yīng)的點分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長最短?若存在,求t的值并說明拋物線平移的方向;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的中線,AEBCBEAD于點F,且AF=DF.

(1)求證:AFEODFB

(2)求證:四邊形ADCE是平行四邊形;

(3)當(dāng)ABAC之間滿足什么條件時,四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學(xué)校至少要把坡頂D向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,ACB=30°,BC=2ADCABC關(guān)于AC

稱,點EF分別是邊DC、BC上的任意一點,且DECF,BE、DF相交于點P,則CP的最小值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點A、點B表示的數(shù)分別為a、b,則A,B兩點之間的距離AB=|a﹣b|,線段AB的中點表示的數(shù)為.如:如圖,數(shù)軸上點A表示的數(shù)為﹣2,點B表示的數(shù)為8,則A、兩點間的距離AB=|﹣2﹣8|=10,線段AB的中點C表示的數(shù)為=3,點P從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度向左勻速運動.設(shè)運動時間為t秒(t>0).

(1)用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為   ,點Q表示的數(shù)為   

(2)求當(dāng)t為何值時,P、Q兩點相遇,并寫出相遇點所表示的數(shù);

(3)求當(dāng)t為何值時,PQ=AB;

(4)若點M為PA的中點,點N為PB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A. B兩地果園分別有蘋果30噸和40噸,C. D兩地的農(nóng)貿(mào)市場分別需求蘋果20噸和50噸。已知從A. B兩地到C. D兩地的運價如表:

(1)填空:若從A果園運到C地的蘋果為10噸,則從A果園運到D地的蘋果為___噸,從B果園運到C地的蘋果為___噸,從B果園運到D地的蘋果為___噸,總運輸費為___元;

(2)如果總運輸費為750元時,那么從A果園運到C地的蘋果為多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

同步練習(xí)冊答案