【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對角線AC、BD相交于點O,將對角線AC所在的直線繞點O順時針旋轉(zhuǎn)角α(0°<α<90°)后得直線l,直線l與AD、BC兩邊分別相交于點E和點F.
(1)求證:△AOE≌△COF;
(2)當α=30°時,求線段EF的長度.
【答案】
(1)解:∵四邊形ABCD是菱形,
∴AD∥BC,AO=OC,
∴ ,
∴AE=CF,OE=OF,
在△AOE和△COF中,
∴△AOE≌△COF.
(2)解:當α=30°時,即∠AOE=30°,
∵四邊形ABCD是菱形,∠ABC=60°,
∴∠OAD=60°,
∴∠AEO=90°,
在Rt△AOB中,
sin∠ABO= = = ,
∴AO=1,
在Rt△AEO中,
cos∠AOE=cos30°= = ,
∴OE= ,
∴EF=2OE= .
【解析】(1)首先證明AE=CF,OE=OF,結(jié)合AO=CO,利用SSS證明△AOE≌△COF;(2)首先畫出α=30°時的圖形,根據(jù)菱形的性質(zhì)得到EF⊥AD,解三角形即可求出OE的長,進而得到EF的長.
科目:初中數(shù)學 來源: 題型:
【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,且其中一個等腰三角形的底角是另一個等腰三角形底角的2倍,我們把這條對角線叫做這個四邊形的黃金線,這個四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個內(nèi)角的度數(shù);
(2)如圖2,點B是弧AC的中點,請在⊙O上找出所有的點D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示正整數(shù)后,背面朝上,洗勻放好,現(xiàn)從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張.
(1)請用樹狀圖或列表的方法表示兩次抽取卡片的所有可能出現(xiàn)的結(jié)果(卡片用A,B,C,D表示);
(2)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算下列各式
(1)2cos45°+sin30°cos60°+cos30°
(2)| ﹣5|+2cos30°+( )﹣1+(9﹣ )0+ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQ與BC交于點G,則△EBG的周長是cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB>AD,按以下步驟作圖:以點A為圓心,小于AD的長為半徑畫弧,分別交AB、AD于點E、F;再分別以點E、F為圓心,大于 EF的長為半徑畫弧,兩弧交于點G;作射線AG交CD于點H,則下列結(jié)論中不能由條件推理得出的是( )
A.AG平分∠DAB
B.AD=DH
C.DH=BC
D.CH=DH
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,點P在AB上,AP=2,點E、F同時從點P出發(fā),分別沿PA、PB以每秒1個單位長度的速度向點A、B勻速運動,點E到達點A后立刻以原速度沿AB向點B運動,點F運動到點B時停止,點E也隨之停止.在點E、F運動過程中,以EF為邊作正方形EFGH,使它與△ABC在線段AB的同側(cè).設E、F運動的時間為t/秒(t>0),正方形EFGH與△ABC重疊部分面積為S.
(1)當t=1時,正方形EFGH的邊長是 . 當t=3時,正方形EFGH的邊長是 .
(2)當0<t≤2時,求S與t的函數(shù)關系式;
(3)直接答出:在整個運動過程中,當t為何值時,S最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格:
事件A | 必然事件 | 隨機事件 |
m的值 |
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com