【題目】小明學(xué)習(xí)了特殊的四邊形---平行四邊形后,對特殊四邊形的探究產(chǎn)生了興趣,發(fā)現(xiàn)另外一類特殊四邊形,如圖1,我們把兩條對角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是

(2)性質(zhì)探究:如圖1,四邊形ABCD是垂美四邊形,試探究兩組對邊AB、CDBC、AD之間的數(shù)量關(guān)系.

(3)問題解決:如圖2,分別以RtACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5

①求證:四邊形BCGE為垂美四邊形;

②直接寫出四邊形BCGE的面積.

【答案】1)菱形、正方形;(2;(3)①見詳解;②.

【解析】

1)由平行四邊形、矩形、菱形、正方形的性質(zhì)即可得出結(jié)論;

2)利用勾股定理,分別求出,,,,然后即可得到結(jié)論;

3)①連接CG、BE,證出∠GAB=CAE,由SAS證明△GAB≌△CAE,得出BG=CE,∠ABG=AEC,再由角的互余關(guān)系和三角形內(nèi)角和定理求出∠BNM=90°,得出BGCE即可;

②根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合面積公式計算即可.

解:(1)∵在平行四邊形、矩形、菱形、正方形中,兩條對角線互相垂直的四邊形是菱形、正方形,

∴菱形和正方形一定是垂美四邊形;

故答案為:菱形、正方形;

2)設(shè)ACBD相交于點O

由勾股定理,得:

,

,;

,

;

;

3)①證明:連接CGBE,如圖2所示:


∵四邊形ACFG和四邊形ABDE是正方形,

∴∠F=CAG=BAE=90°,FG=AG=AC=CFAB=AE,

∴∠CAG+BAC=BAE+BAC

即∠GAB=CAE,

在△GAB和△CAE中,

∴△GAB≌△CAESAS),

BG=CE,∠ABG=AEC,

又∵∠AEC+AME=90°,∠AME=BMN,

∴∠ABG+BMN=90°,

∴∠BNM=90°,

BGCE,

∴四邊形BCGE為垂美四邊形;

②解:∵FG=CF=AC=4,∠ACB=90°,AB=5,

BC=

BF=BC+CF=7,

RtBFG中,BG=,

CE=BG=,

∵四邊形BCGE為垂美四邊形,

∴四邊形BCGE的面積=BCE的面積+GCE的面積

=

=

=

=;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交AB兩點(A點在B點左側(cè)),直線與拋物線交于AC兩點,其中C點的橫坐標為2.

(1)求AB兩點的坐標及直線AC的函數(shù)表達式;

(2)P是線段AC上的一個動點,過P點作軸的平行線交拋物線于E點,求線段PE長度的最大值;

(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、CF、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).

(1)求k、m的值;

(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.

①當(dāng)n=1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tanACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的實數(shù)),其中正確結(jié)論的個數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A.一處B.二處C.三處D.四處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,ABAC4,∠BAC100°,點D是底邊BC的動點(點D不與B、C重合),連接AD,作∠ADE40°,DEAC交于點E

1)當(dāng)DC等于多少時,△ABD與△DCE全等?請說明理由;

2)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求出∠BDA的度數(shù);若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB、DE切分別切⊙O于點A、B、C,若∠P=50°,則∠DOE=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,點DAC上,且BDBCAD,求∠A的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案