【題目】如圖,在ABC中,ABAC,點(diǎn)DAC上,且BDBCAD,求∠A的度數(shù).

【答案】A36°.

【解析】

設(shè)∠A=x°.在△ABD中,由等邊對(duì)等角得到∠A=ABD=x°,由三角形外角的性質(zhì)得到∠BDC=A+ABD=2x°.在△BDC中,由等邊對(duì)等角得到∠BDC=BCD=2x°.

在△ABC中,由等邊對(duì)等角得到∠ABC=BCD=2x°,由三角形內(nèi)角和定理得到x+2x+2x=180,解方程即可.

設(shè)∠A=x°.

BD=AD,∴∠A=ABD=x°,

BDC=A+ABD=2x°.

BD=BC,∴∠BDC=BCD=2x°.

AB=AC,∴∠ABC=BCD=2x°,

在△ABC中,x+2x+2x=180,

解得:x=36,∴∠A=36°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明學(xué)習(xí)了特殊的四邊形---平行四邊形后,對(duì)特殊四邊形的探究產(chǎn)生了興趣,發(fā)現(xiàn)另外一類(lèi)特殊四邊形,如圖1,我們把兩條對(duì)角線(xiàn)互相垂直的四邊形叫做垂美四邊形.

(1)概念理在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是

(2)性質(zhì)探究:如圖1,四邊形ABCD是垂美四邊形,試探究?jī)山M對(duì)邊AB、CDBC、AD之間的數(shù)量關(guān)系.

(3)問(wèn)題解決:如圖2,分別以RtACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5

①求證:四邊形BCGE為垂美四邊形;

②直接寫(xiě)出四邊形BCGE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE⊥BDE,CF⊥BDF,AB=CD,AE=CF,則圖中全等三角形共有( )

A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以△ABC的一邊BC為直徑作⊙O,交ABD,EAC的中點(diǎn),DE⊙O于點(diǎn)D.

(1)請(qǐng)判斷AC⊙O的位置關(guān)系,并說(shuō)明理由.

(2)若半徑為5,BD8,求線(xiàn)段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),∠AOB30°,OP8,點(diǎn)M和點(diǎn)N分別是射線(xiàn)OA和射線(xiàn)OB上的動(dòng)點(diǎn),則△PMN周長(zhǎng)的最小值為( 。

A. 5B. 6C. 8D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC2,∠B=∠C40°,點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE40°,DE交線(xiàn)段ACE

1)當(dāng)∠BDA115°時(shí),∠EDC   °,∠DEC   °;點(diǎn)DBC運(yùn)動(dòng)時(shí),∠BDA逐漸變   (填“大”或“小”);

2)當(dāng)DC等于多少時(shí),△ABD≌△DCE,請(qǐng)說(shuō)明理由;

3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫(xiě)出∠BDA的度數(shù).若不可以,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=2x2+m的圖像經(jīng)過(guò)點(diǎn)(0,-4),正方形ABCD的頂點(diǎn)C,Dx軸上,點(diǎn)A,B恰好在二次函數(shù)的圖像上,則圖中陰影部分的面積之和為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于反比例函數(shù),下列說(shuō)法不正確的是( )

A. 當(dāng)時(shí), 的增大而減小 B. 點(diǎn)在它的圖象上

C. 它的圖象在第一、三象限 D. 當(dāng)時(shí), 的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)?方法解下列一元二次方程:

(1)(2x﹣1)2﹣9=0

(2)(x﹣1)(x+2)=4

(3)3x﹣1=2x

(4)3(x﹣5)2=2(5﹣x)

查看答案和解析>>

同步練習(xí)冊(cè)答案