【題目】用適當?shù)?方法解下列一元二次方程:

(1)(2x﹣1)2﹣9=0

(2)(x﹣1)(x+2)=4

(3)3x﹣1=2x

(4)3(x﹣5)2=2(5﹣x)

【答案】(1) (2) (3)

(4)

【解析】

(1)利用直接開平方法解方程;

(2)先把方程化為一般式,然后利用因式分解法解方程;

(3)先把方程化為一般式,然后利用因式分解法解方程;

(4)直接利用因式分解法解方程

解:(1)∵(2x﹣1)2﹣9=0

∴2x﹣1=±3,

∴x1=2,x2=﹣1,

(2)∵(x﹣1)(x+2)=4

∴x2+x﹣6=0,

∴(x+3)(x﹣2)=0,

∴x1=﹣3,x2=2,

(3)∵3x2﹣1=2x

∴3x2﹣2x﹣1=0,

∴(3x+1)(x﹣1)=0,

∴x1=﹣,x2=1,

(4)∵3(x﹣5)2=2(5﹣x),

∴(x﹣5)[3(x﹣5)+2]=0,

∴x1=5,x2=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,點DAC上,且BDBCAD,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,是某公園的平面示意圖,分別是該公園的四個入口,兩條主干道交于點,經(jīng)測量,,請你幫助公園的管理人員解決以下問題:

1)公園的面積為

2)如圖②,公園管理人員在參觀了武漢東湖綠道后,為提升游客游覽的體驗感,準備修建三條綠道,其中點上,點上,且(點與點不重合),并計劃在兩塊綠地所在區(qū)域種植郁金香,求種植郁金香區(qū)域的面積;

3)若修建(2)中的綠道每千米費用為10萬元,請你畫出該公園修建這三條綠道投入資金最小值時的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC

1)求作點P,使點PB、C兩點的距離相等,且點P到∠BAC兩邊的距離也相等(尺規(guī)作圖,保留作圖痕跡,不寫作法)

2)在(1)中,連接PB、PC,若∠BAC=40°,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,于點于點交于點平分

圖中有多少對全等三角形?請一一列舉出來(不必說明理由)

求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小丁在研究數(shù)學問題時遇到一個定義:對于排好順序的k個數(shù):x1,x2,…,xk,稱為數(shù)列Ak:x1,x2,…,xk,其中k為整數(shù)且k≥3.

定義V(Ak)=|x1﹣x2|+|x2﹣x3|+…+|xk2﹣xk1|+|xk1﹣xk|.

例如,若數(shù)列A5:1,2,3,4,5,則V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.

根據(jù)以上材料,回答下列問題:

(1)已知數(shù)列A3:3,5,﹣2,求V(A3).

(2)已知數(shù)列A4:x1,x2,x3,x4,其中x1,x2,x3,x4為4個互不相等的整數(shù),且x1=3,x4=7,V(A4)=4,直接寫出滿足條件的數(shù)列A4

(3)已知數(shù)列A5:x1,x2,x3,x4,x5中的5個數(shù)均為非負整數(shù),且x1+x2+x3+x4+x5=25,請直接寫出V(A5)的最大值和最小值及對應(yīng)的數(shù)列.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請將下列事件發(fā)生的概率標在圖中:

(1)從高處拋出的物體必落到地面;

(2)從裝有個紅球的袋子中任取一個,取出的球是白球;

(3)月亮繞著地球轉(zhuǎn);

(4)從裝有個紅球、個白球的口袋中任取一個球,恰好是紅球(這些球除顏色外完全相同);

(5)三名選手抽簽決定比賽順序(有三個簽,分別寫有,),抽到寫有的簽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三個村莊AB、C之間的距離分別為AB=12kmAC=5km,BC=13km,要從A修一條公路AD直達BC,已知公路的造價為26000/km,求這條公路的最低造價是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在等邊ABC 中,AD是∠BAC的平分線,一個含有120°角的MPN的頂點P(MPN=120°)與點D重合,一邊與AB垂直于點E,另一邊與AC交于點F.

①請猜想并寫出AE+AFAD之間滿足的數(shù)量關(guān)系,不必證明.

②在圖1的基礎(chǔ)上,若MPN繞著它的頂點P旋轉(zhuǎn),E、F仍然是MPN的兩邊與AB、AC的交點,當三角形紙板的邊不與AB垂直時,如圖2,(1)中猜想是否仍然成立?說明理由.

③如圖 3,若MPN繞著它的頂點P旋轉(zhuǎn),當MPN的一邊與AB的延長線相交,另一邊與AC的反向延長線相交時,AE、AFAD之間又滿足怎樣的數(shù)量關(guān)系?直接寫出結(jié)論,不必證明.

查看答案和解析>>

同步練習冊答案