【題目】如圖,兩個(gè)三角形紙板,能完全重合,,,將繞點(diǎn)從重合位置開始,按逆時(shí)針方向旋轉(zhuǎn),邊,分別與,交于點(diǎn)(點(diǎn)不與點(diǎn),重合),點(diǎn)的內(nèi)心,若,點(diǎn)運(yùn)動(dòng)的路徑為,則圖中陰影部分的面積為(

A.B.C.D.

【答案】D

【解析】

先通過點(diǎn)的內(nèi)心和題中的角度關(guān)系求出∠BCN=30°,然后即可得到△NHC為直角三角形,陰影部分的面積為扇形BCN的面積減去△NHC的面積.

解:∵

∴∠OBC+OCB=180°-130°=50°,

∵點(diǎn)的內(nèi)心,

BOCO分別為∠ABC、∠BCM的角平分線,

∴∠ABC+BCM=2OBC+2OCB=100°,

,

∴∠BCM=40°

又∵,

∴∠MCN=180°-50°-60°=70°,

∴∠BCN=70°-40°=30°,

∴∠NHC=180°-30°-60°=90°,即△MHC為直角三角形,

由題可知,

,,

,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我為武漢加油征文活動(dòng)中,學(xué)校計(jì)劃對獲得一、二等獎(jiǎng)的學(xué)生分別獎(jiǎng)勵(lì)一臺計(jì)算器,一個(gè)考試包.已知購買臺計(jì)算器和個(gè)考試包共元,購買臺計(jì)算器和個(gè)考試包共元.

1)計(jì)算器、考試包的單價(jià)分別為多少元?

2)經(jīng)與商家協(xié)商,購買計(jì)算器超過臺時(shí),每增加一臺,單價(jià)降低元;超過臺,均按購買臺的單價(jià)銷售,考試包一律按原價(jià)銷售,學(xué)校計(jì)劃獎(jiǎng)勵(lì)一、等獎(jiǎng)學(xué)生共計(jì)人,其中一等獎(jiǎng)的人數(shù)不少于人,且不超過人,這次獎(jiǎng)勵(lì)一等獎(jiǎng)學(xué)生多少人時(shí),購買獎(jiǎng)品金額最少,最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)在以為圓心,為半徑的⊙上,的中點(diǎn),若長的最大值為,的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳天虹某商場從廠家批發(fā)電視機(jī)進(jìn)行零售,批發(fā)價(jià)格與零售價(jià)格如下表:

電視機(jī)型號

批發(fā)價(jià)(/)

1500

2500

零售價(jià)(/)

2025

3640

若商場購進(jìn)甲、乙兩種型號的電視機(jī)共50臺,用去9萬元.

(1)求商場購進(jìn)甲、乙型號的電視機(jī)各多少臺?

(2)元旦商場決定進(jìn)行優(yōu)惠促銷:以零售價(jià)的七五折銷售乙種型號電視機(jī),兩種電視機(jī)銷售完畢,商場共獲利8.5%,求甲種型號電視機(jī)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2=的圖象交于AB兩點(diǎn),已知當(dāng)x1時(shí),y1y2;當(dāng)0x1時(shí),y1y2

1)求一次函數(shù)的函數(shù)表達(dá)式;

2)已知反比例函數(shù)在第一象限的圖象上有一點(diǎn)Cx軸的距離為2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】復(fù)課返校后,為了拉大學(xué)生鍛煉的間距,學(xué)校決定增購適合獨(dú)立訓(xùn)練的兩種體育器材:跳繩和毽子.如果購進(jìn)5根跳繩和6個(gè)毽子共需196元;購進(jìn)2根跳繩和5個(gè)鍵子共需120元.

1)求一根跳繩和一個(gè)毽子的售價(jià)分別是多少元;

2)學(xué)校計(jì)劃購買跳繩和鍵子兩種器材共400個(gè),由于受疫情影響,商場決定對這兩種器材打折銷售,其中跳繩以八折出售,毽子以七五折出售,學(xué)校要求跳繩的數(shù)量不少于毽子數(shù)量的3倍,跳繩的數(shù)量不多于310根,請你求出學(xué);ㄥX最少的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(diǎn)(不與端點(diǎn)重合),作,分別交、圓周于、,連接,已知

1)求證:為⊙的切線;

2)已知,填空:

①當(dāng)__________時(shí),四邊形是菱形;

②若,當(dāng)__________時(shí),為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商店購進(jìn)了足球和排球共20個(gè),一共花了1360元,進(jìn)價(jià)和售價(jià)如表:

足球

排球

進(jìn)價(jià)(元/個(gè))

80

50

售價(jià)(元/個(gè))

95

60

l)購進(jìn)足球和排球各多少個(gè)?

2)全部銷售完后商店共獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣ax2+2ax+cx軸相交于A(﹣1,0)、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸相交于點(diǎn)C0,3),點(diǎn)D是拋物線的頂點(diǎn).

1)如圖1,求拋物線的解析式;

2)如圖1,點(diǎn)F0b)在y軸上,連接AF,點(diǎn)Q是線段AF上的一個(gè)動(dòng)點(diǎn),P是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)b=﹣時(shí),求四邊形CQBP面積的最大值與點(diǎn)P的坐標(biāo);

3)如圖2,點(diǎn)C1與點(diǎn)C關(guān)于拋物線對稱軸對稱.將拋物線y沿直線AD平移,平移后的拋物線記為y1,y1的頂點(diǎn)為D1,將拋物線y1沿x軸翻折,翻折后的拋物線記為y2y2的頂點(diǎn)為D2.在(2)的條件下,點(diǎn)P平移后的對應(yīng)點(diǎn)為P1,在平移過程中,是否存在以P1D2為腰的等腰△C1P1D2,若存在請直接寫出點(diǎn)D2的橫坐標(biāo),若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案