【題目】在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,4)
(1)畫出△ABC先向左平移1個單位,再向下平移4個單位得到的△A1B1C1,寫出點A1的坐標____________
(2)畫出△A1B1C1繞原點O順時針旋轉90°,得到△A2B2C2,寫出點A2的坐標_______
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結BE交MN于點F.已知點A的坐標為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標;
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=mx2-6x+1(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象都經(jīng)過y軸上的一個定點;
(2)若該函數(shù)的圖象與x軸只有一個交點,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師請同學思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時,有如下思路:連接AC.
結合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結論并證明;
②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AC∥BD,折線AMB夾在兩條平行線間.(1)判斷∠M,∠A,∠B的關系;(2)請你嘗試改變問題中的某些條件,探索相應的結論.建議:①折線中折線段數(shù)量增加到n條(n=3,4,…);
②可如圖1,圖2,或M點在平行線外側.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個長為24米的籬笆,一面利用墻(墻的最大可用長度為10米)圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.
(1)求S與x的函數(shù)關系式及x的取值范圍;
(2)如果要圍成面積為45平方米的花圃,那么AB的長為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學興趣小組,對函數(shù)y=|x﹣1|+1的圖象和性質進行了探究,探究過程如下:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | … |
其中m= .
(2)如圖,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象:
(3)根據(jù)畫出的函數(shù)圖象特征,仿照示例,完成下列表格中的函數(shù)變化規(guī)律:
序號 | 函數(shù)圖象特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線x=1的右側,函數(shù)圖象呈上升狀態(tài) | 當x>1時,y隨x的增大而增大 |
① | 在直線x=1的左側,函數(shù)圖象呈下降狀態(tài) |
|
示例2 | 函數(shù)圖象經(jīng)過點(﹣3,5) | 當x=﹣3時,y=5 |
② | 函數(shù)圖象的最低點是(1,1) |
|
(4)當2<y≤4時,x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點 A、B 在數(shù)軸上分別表示有理數(shù) a、b.
(1)對照數(shù)軸,填寫下表:
(2)若 A、B 兩點間的距離記為 d,試問 d 和 a、b(a<b)有何數(shù)量關系?數(shù)學式子表示.
(3)求所有到數(shù) 5 和-5 的距離之和為 10 的整數(shù)的和,列式計算.
(4)若點 C 表示的數(shù)為 x,當點 C 在什么位置時,|x+1|+|x﹣2|取得的值最小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com