【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問題時(shí),有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由參考小敏思考問題方法解決一下問題;

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫出結(jié)論并證明;

②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫出結(jié)論.

【答案】(1)是平行四邊形(2)AC=BD;AC⊥BD.

【解析】

試題分析:(1)如圖2,連接AC,根據(jù)三角形中位線的性質(zhì)平行四邊形判定定理即可得到結(jié)論;

(2)由(1)知,四邊形EFGH是平行四邊形,且FG=BD,HG=AC,于是得到當(dāng)AC=BD時(shí),F(xiàn)G=HG,即可得到結(jié)論;

若四邊形EFGH是矩形,則HGF=90°,GHGF,GHACGFBD,則ACBD

試題解析:(1)是平行四邊形證明如下

如圖2,連接AC,∵E是AB的中點(diǎn),F(xiàn)是BC的中點(diǎn),∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,綜上可得:EF∥HG,EF=HG,故四邊形EFGH是平行四邊形;

(2)AC=BD.

理由如下:

由(1)知,四邊形EFGH是平行四邊形,且FG=BD,HG=AC,∴當(dāng)AC=BD時(shí),F(xiàn)G=HG,∴平行四邊形EFGH是菱形;

當(dāng)AC⊥BD時(shí),四邊形EFGH為矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個(gè)正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時(shí)間的增加而減少.已知原有蓄水量y1(萬m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示.針對(duì)這種干旱情況,從第10天開始向水庫注水,注水量y2(萬m3)與時(shí)間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與干旱持續(xù)時(shí)間x(天)的函數(shù)關(guān)系式,并求x=10時(shí)的水庫總蓄水量.

(2)求當(dāng)0≤x≤50時(shí),水庫的總蓄水量y(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x 的范圍),若總蓄水量不多于840萬m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時(shí)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a21x2+3ax30的一個(gè)解是x1,則a的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種儲(chǔ)蓄的月利率是0.36%,今存入本金100元,求本息和(本金與利息的和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩雙曲線y=y=分別位于第一、四象限,Ay軸上任意一點(diǎn),By=上的點(diǎn),Cy=上的點(diǎn),線段BCx軸于點(diǎn) D,且4BD=3CD,則下列說法:①雙曲線y=在每個(gè)象限內(nèi),yx的增大而減;②若點(diǎn)B的橫坐標(biāo)為3,則點(diǎn)C的坐標(biāo)為(3);k=4;④△ABC的面積為定值7,正確的有( 

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=6,E為AB中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B開始沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,動(dòng)點(diǎn)Q從點(diǎn)C開始沿CD﹣DA方向運(yùn)動(dòng),與點(diǎn)P同時(shí)出發(fā),同時(shí)停止.這兩點(diǎn)的運(yùn)動(dòng)速度均為每秒1個(gè)單位.若設(shè)他們的運(yùn)動(dòng)時(shí)間為x(秒),EPQ的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(a32的結(jié)果是(  )

A. a5 B. a6 C. a8 D. a9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2a的等邊三角形ABC中,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接HN.則在點(diǎn)M運(yùn)動(dòng)過程中,線段HN長度的最小值是( )

A.a B.a(chǎn) C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案