【題目】如圖,在ABCD中,AB⊥BD,sinA=,將ABCD放置在平面直角坐標(biāo)系中,且AD⊥x軸,點(diǎn)D的橫坐標(biāo)為1,點(diǎn)C的縱坐標(biāo)為3,恰有一條雙曲線y=(k>0)同時(shí)經(jīng)過B、D兩點(diǎn),則點(diǎn)B的坐標(biāo)是_____.
【答案】(,).
【解析】
連結(jié)DB,作BH⊥AD于H,DE⊥BC于E,如圖,
∵AB⊥BD,∴∠ABD=90°,
在Rt△ABD中,sin∠A==,
設(shè)BD=4t,則AD=5t,∴AB= =3t,
在Rt△ABH中,∵sin∠A=,
∴BH=×3t= t,
∵四邊形ABCD為平行四邊形,
∴AD∥BC,AD=BC=5t,CD=AB=3t,
而AD⊥x軸,∴BC⊥x軸,
在Rt△CDE中,CE= ,
∴D(1,k),點(diǎn)C的縱坐標(biāo)為3,
∴B(1+,3﹣5t),k=3﹣,
∵1k=(1+ )(3﹣5t),即3﹣ =(1+ )(3﹣5t),
整理得3t2﹣t=0,解得t1=0(舍去),t2=,
∴B ,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠C=90°,AC=BC=7,D是AB的中點(diǎn),點(diǎn)E在AC上,點(diǎn)F在BC上,DE=DF,若BF=4,則EF=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,△ABC是等邊三角形,點(diǎn)D、E分別在邊AB、BC上,且BD=BE,連接DE.
(1)求證:DE∥AC;
(2)將圖①中的△BDE繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A、D、E在同一條直線上,如圖②,求∠AEC的度數(shù);
(3)在(2)的條件下,如圖③,連接CD,過點(diǎn)D作DM⊥BE于點(diǎn)M,在線段BM上取點(diǎn)N,使得∠DNE+∠DCE=180°.請(qǐng)?zhí)剿魅龡l線段EN,MN,EC之間的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位歌手進(jìn)入“我是歌手”的決賽,他們通過抽簽來決定演唱順序.
(1)求甲第一位出場(chǎng)的概率;
(2)求甲比乙先出場(chǎng)的概率,請(qǐng)用列表或畫樹狀圖的方法進(jìn)行分析說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(1,0)、B(0,2),BA=BC,∠ABC=90°,則點(diǎn) C 的坐標(biāo)為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(m,3),AB⊥x軸于點(diǎn)B,tan∠OAB=,反比例函數(shù)y1=的圖象的一支經(jīng)過AO的中點(diǎn)C,且與AB交于點(diǎn)D.
(1)求反比例函數(shù)解析式;
(2)設(shè)直線OA的解析式為y2=nx,請(qǐng)直接寫出y1<y2時(shí),自變量x的取值范圍 .
(3)如圖2,若函數(shù)y=3x與y1=的圖象的另一支交于點(diǎn)M,求△OMB與四邊形OCDB的面積的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以正方形ABCD的邊AB為直徑作⊙O,E是⊙O上的一點(diǎn),EF⊥AB于F,AF>BF,作直線DE交BC于點(diǎn)G.若正方形的邊長(zhǎng)為10,EF=4.
(1)分別求AF、BF的長(zhǎng).
(2)求證:DG是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com