【題目】為鼓勵下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價提供產(chǎn)品給下崗人員自主銷售,成本價與出廠價之間的差價由政府承擔(dān).老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價為每袋12元,出廠價為每袋16元,每天銷售量(袋)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):

1)老李在開始創(chuàng)業(yè)的第1天將銷售單價定為17元,那么政府這一天為他承擔(dān)的總差價為多少元?

2)設(shè)老李獲得的利潤為(元),當(dāng)銷售單價為多少元時,每天可獲得最大利潤?

3)物價部門規(guī)定,這種面條的銷售單價不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔(dān)的總差價最少為多少元?

【答案】(1)政府這個月為承擔(dān)的總差價為156元;(2)當(dāng)銷售單價定為21元時,每月可獲得最大利潤243元;(3)銷售單價定為24元時,政府每個月為他承擔(dān)的總差價最少為72元.

【解析】

1)把x17代入y3x90求出銷售的件數(shù),然后求出政府承擔(dān)的成本價與出廠價之間的差價;
2)由總利潤=銷售量每件純賺利潤,得,把函數(shù)轉(zhuǎn)化成頂點坐標(biāo)式,根據(jù)二次函數(shù)的性質(zhì)求出銷售單價及最大利潤;
3)令,求出x的值,求出利潤的范圍,然后根據(jù)一次函數(shù)的性質(zhì)求出總差價的最小值.

解:(1)當(dāng)時,,

,即政府這個月為承擔(dān)的總差價為156元;

2)依題意得,,

,∴當(dāng)時,有最大值243

即當(dāng)銷售單價定為21元時,每月可獲得最大利潤243元;

3)由題意得:,解得:,

,拋物線開口向下,

∴當(dāng)時,,

設(shè)政府每個月為他承擔(dān)的總差價為元,

,

,

的增大而減小,

∴當(dāng)時,最小,

即銷售單價定為24元時,政府每個月為他承擔(dān)的總差價最少為72元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象的頂點為A,與y軸交于點B,異于頂點A的點C(1,n)在該函數(shù)圖象上.

1)當(dāng)m=5時,求n的值.

2)當(dāng)n=2時,若點A在第一象限內(nèi),結(jié)合圖象,求當(dāng)y時,自變量x的取值范圍.

3)作直線ACy軸相交于點D.當(dāng)點Bx軸上方,且在線段OD上時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把△ABC放置在平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(-60),點C的坐標(biāo)為(8,0),M,N分別是線段AB,AC上的點,將△AMN沿直線MN翻折后,點A落在x軸上的A′處.

當(dāng)MNx軸時,判斷△A'CN的形狀.

如圖,當(dāng)A'MAB時.

①求A'的坐標(biāo);②求MN的長.

當(dāng)△A'MB是等腰三角形時,直接寫出A'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,如圖1ABO的弦,點F的中點,過點FEFAB于點E,易得點EAB的中點,即AEEBO上一點CACBC),則折線ACB稱為O的一條“折弦”.

1)當(dāng)點C在弦AB的上方時(如圖2),過點FEFAC于點E,求證:點E是“折弦ACB”的中點,即AEEC+CB

2)當(dāng)點C在弦AB的下方時(如圖3),其他條件不變,則上述結(jié)論是否仍然成立?若成立說明理由;若不成立,那么AE、ECCB滿足怎樣的數(shù)量關(guān)系?直接寫出,不必證明.

3)如圖4,已知RtABC中,∠C90°,∠BAC30°,RtABC的外接圓O的半徑為2,過O上一點PPHAC于點H,交AB于點M,當(dāng)∠PAB45°時,求AH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線交坐標(biāo)軸于兩點,拋物線經(jīng)過兩點,且交軸于另一點.為第一象限內(nèi)拋物線上一動點,過點于點,交軸于點

1)求拋物線的解析式;

2)設(shè)點的橫坐標(biāo)為在點移動的過程中,存在求出此時的值;

3)在拋物線上取點在坐標(biāo)系內(nèi)取點問是否存在以為頂點且以為邊的矩形?如果存在,請直接寫出點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計的過直線外一點作這條直線的平行線的尺規(guī)作圖過程.

已知:直線l及直線l外一點P

求作:直線,使得

作法:如圖,

①任意取一點K,使點K和點P在直線l的兩旁;

②以P為圓心,長為半徑畫弧,交l于點,連接

③分別以點為圓心,以長為半徑畫弧,兩弧相交于點Q(點Q和點A在直線的兩旁);

④作直線

所以直線就是所求作的直線.

根據(jù)小東設(shè)計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:連接

______,______,

四邊形是平行四邊形(__________)(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年全國兩會于35日在人民大會堂開幕,某社區(qū)為了解居民對此次兩會的關(guān)注程度,在全社區(qū)范圍內(nèi)隨機抽取部分居民進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把居民對兩會的關(guān)注程度分成淡薄、一般較強、很強四個層次,并繪制成如下不完整的統(tǒng)計圖:

請結(jié)合圖表中的信息,解答下列問題:

(1)此次調(diào)查一共隨機抽取了_____名居民;

(2)請將條形統(tǒng)計圖補充完整;

(3)扇形統(tǒng)計圖中,很強所對應(yīng)扇形圓心角的度數(shù)為_____

(4)若該社區(qū)有1500人,則可以估計該社區(qū)居民對兩會的關(guān)注程度為淡薄層次的約有 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(A在點B左側(cè)),根據(jù)對稱性AMB恒為等腰三角形,我們規(guī)定:當(dāng)AMB為直角三角形時,就稱AMB為該拋物線的“完美三角形”.如圖2,則拋物線yx的“完美三角形”斜邊AB的長________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校了解九年級學(xué)生近兩個月推薦書目的閱讀情況,隨機抽取了該年級的部分學(xué)生,調(diào)查了他們每人推薦書目的閱讀本數(shù).設(shè)每名學(xué)生的閱讀本數(shù)為n,并按以下規(guī)定分為四檔:當(dāng)n3時,為偏少;當(dāng)3≤n5時,為一般;當(dāng)5≤n8時,為良好;當(dāng)n≥8時,為優(yōu)秀.將調(diào)查結(jié)果統(tǒng)計后繪制成不完整的統(tǒng)計圖表:

閱讀本數(shù)n(本)

1

2

3

4

5

6

7

8

9

人數(shù)(名)

1

2

6

7

12

x

7

y

1

請根據(jù)以上信息回答下列問題:

1)分別求出統(tǒng)計表中的x、y的值;

2)估計該校九年級400名學(xué)生中為優(yōu)秀檔次的人數(shù);

3)從被調(diào)查的優(yōu)秀檔次的學(xué)生中隨機抽取2名學(xué)生介紹讀書體會,請用列表或畫樹狀圖的方法求抽取的2名學(xué)生中有1名閱讀本數(shù)為9的概率.

查看答案和解析>>

同步練習(xí)冊答案